Opcode/ Instruction |
Op / En |
64/32 bit Mode Support |
CPUID Feature Flag |
Description |
EVEX.LLIG.66.0F3A.W1 57 VREDUCESD xmm1 {k1}{z}, xmm2, xmm3/m64{sae}, imm8/r |
A |
V/V |
AVX512D Q |
Perform a reduction transformation on a scalar double precision floating-point value in xmm3/m64 by subtracting a number of fraction bits specified by the imm8 field. Also, upper double precision floating-point value (bits[127:64]) from xmm2 are copied to xmm1[127:64]. Stores the result in xmm1 register. |
Op/En |
Tuple Type |
Operand 1 |
Operand 2 |
Operand 3 |
Operand 4 |
A |
Tuple1 Scalar |
ModRM:reg (w) |
EVEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
Perform a reduction transformation of the binary encoded double precision floating-point value in the low qword element of the second source operand (the third operand) and store the reduced result in binary floating-point format to the low qword element of the destination operand (the first operand) under the writemask k1. Bits 127:64 of the destination operand are copied from respective qword elements of the first source operand (the second operand).
The reduction transformation subtracts the integer part and the leading M fractional bits from the binary floating- point source value, where M is a unsigned integer specified by imm8[7:4], see Figure 5-28. Specifically, the reduc- tion transformation can be expressed as: dest = src - (ROUND(2M*src))*2-M; where "Round()" treats "src", "2M", and their product as binary floating-point numbers with normalized signifi- cand and biased exponents. The magnitude of the reduced result can be expressed by considering src= 2p*man2, where ‘man2' is the normalized significand and ‘p' is the unbiased exponent Then if RC = RNE: 0<=|Reduced Result|<=2p-M-1 Then if RC != RNE: 0<=|Reduced Result|<2p-M
This instruction might end up with a precision exception set. However, in case of SPE set (i.e., Suppress Precision Exception, which is imm8[3]=1), no precision exception is reported.
The operation is write masked.
Handling of special case of input values are listed in Table 5-19.
ReduceArgumentDP(SRC[63:0], imm8[7:0]) { // Check for NaN IF (SRC [63:0] = NAN) THEN RETURN (Convert SRC[63:0] to QNaN); FI; M := imm8[7:4]; // Number of fraction bits of the normalized significand to be subtracted RC := imm8[1:0];// Round Control for ROUND() operation RC source := imm[2]; SPE := imm[3];// Suppress Precision Exception TMP[63:0] := 2-M *{ROUND(2M*SRC[63:0], SPE, RC_source, RC)}; // ROUND() treats SRC and 2M as standard binary FP values TMP[63:0] := SRC[63:0] - TMP[63:0]; // subtraction under the same RC,SPE controls RETURN TMP[63:0]; // binary encoded FP with biased exponent and normalized significand }
IF k1[0] or *no writemask* THEN DEST[63:0] := ReduceArgumentDP(SRC2[63:0], imm8[7:0]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[63:0] remains unchanged* ELSE ; zeroing-masking THEN DEST[63:0] = 0 FI; FI; DEST[127:64] := SRC1[127:64] DEST[MAXVL-1:128] := 0
VREDUCESD __m128d _mm_mask_reduce_sd( __m128d a, __m128d b, int imm, int sae) VREDUCESD __m128d _mm_mask_reduce_sd(__m128d s, __mmask16 k, __m128d a, __m128d b, int imm, int sae) VREDUCESD __m128d _mm_maskz_reduce_sd(__mmask16 k, __m128d a, __m128d b, int imm, int sae)
Invalid, Precision.
If SPE is enabled, precision exception is not reported (regardless of MXCSR exception mask).
See Table 2-47, "Type E3 Class Exception Conditions."