VPMOVQD/VPMOVSQD/VPMOVUSQD - Down Convert QWord to DWord

Opcode/ Instruction

Op / En

64/32 bit Mode Support

CPUID Feature Flag

Description

EVEX.128.F3.0F38.W0 35 /r VPMOVQD xmm1/m128 {k1}{z}, xmm2

A

V/V

AVX512VL AVX512F

Converts 2 packed quad-word integers from xmm2 into 2 packed double-word integers in xmm1/m128 with truncation subject to writemask k1.

EVEX.128.F3.0F38.W0 25 /r VPMOVSQD xmm1/m64 {k1}{z}, xmm2

A

V/V

AVX512VL AVX512F

Converts 2 packed signed quad-word integers from xmm2 into 2 packed signed double-word integers in xmm1/m64 using signed saturation subject to writemask k1.

EVEX.128.F3.0F38.W0 15 /r VPMOVUSQD xmm1/m64 {k1}{z}, xmm2

A

V/V

AVX512VL AVX512F

Converts 2 packed unsigned quad-word integers from xmm2 into 2 packed unsigned double-word integers in xmm1/m64 using unsigned saturation subject to writemask k1.

EVEX.256.F3.0F38.W0 35 /r VPMOVQD xmm1/m128 {k1}{z}, ymm2

A

V/V

AVX512VL AVX512F

Converts 4 packed quad-word integers from ymm2 into 4 packed double-word integers in xmm1/m128 with truncation subject to writemask k1.

EVEX.256.F3.0F38.W0 25 /r VPMOVSQD xmm1/m128 {k1}{z}, ymm2

A

V/V

AVX512VL AVX512F

Converts 4 packed signed quad-word integers from ymm2 into 4 packed signed double-word integers in xmm1/m128 using signed saturation subject to writemask k1.

EVEX.256.F3.0F38.W0 15 /r VPMOVUSQD xmm1/m128 {k1}{z}, ymm2

A

V/V

AVX512VL AVX512F

Converts 4 packed unsigned quad-word integers from ymm2 into 4 packed unsigned double-word integers in xmm1/m128 using unsigned saturation subject to writemask k1.

EVEX.512.F3.0F38.W0 35 /r VPMOVQD ymm1/m256 {k1}{z}, zmm2

A

V/V

AVX512F

Converts 8 packed quad-word integers from zmm2 into 8 packed double-word integers in ymm1/m256 with truncation subject to writemask k1.

EVEX.512.F3.0F38.W0 25 /r VPMOVSQD ymm1/m256 {k1}{z}, zmm2

A

V/V

AVX512F

Converts 8 packed signed quad-word integers from zmm2 into 8 packed signed double-word integers in ymm1/m256 using signed saturation subject to writemask k1.

EVEX.512.F3.0F38.W0 15 /r VPMOVUSQD ymm1/m256 {k1}{z}, zmm2

A

V/V

AVX512F

Converts 8 packed unsigned quad-word integers from zmm2 into 8 packed unsigned double-word integers in ymm1/m256 using unsigned saturation subject to writemask k1.

Instruction Operand Encoding

Op/En

Tuple Type

Operand 1

Operand 2

Operand 3

Operand 4

A

Half Mem

ModRM:r/m (w)

ModRM:reg (r)

N/A

N/A

Description

VPMOVQW down converts 64-bit integer elements in the source operand (the second operand) into packed double- words using truncation. VPMOVSQW converts signed 64-bit integers into packed signed doublewords using signed saturation. VPMOVUSQW convert unsigned quad-word values into unsigned double-word values using unsigned saturation.

The source operand is a ZMM/YMM/XMM register. The destination operand is a YMM/XMM/XMM register or a 256/128/64-bit memory location.

Down-converted doubleword elements are written to the destination operand (the first operand) from the least- significant doubleword. Doubleword elements of the destination operand are updated according to the writemask. Bits (MAXVL-1:256/128/64) of the register destination are zeroed.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPMOVQD instruction (EVEX encoded version) reg-reg form

   (KL, VL) = (2, 128), (4, 256), (8, 512)
   FOR j := 0 TO KL-1
       i := j * 32
       m := j * 64
       IF k1[j] OR *no writemask*
            THEN DEST[i+31:i] := TruncateQuadWordToDWord (SRC[m+63:m])
            ELSE *zeroing-masking*              ; zeroing-masking
                         DEST[i+31:i] := 0
                FI
       FI;
   ENDFOR
   DEST[MAXVL-1:VL/2] := 0;

VPMOVQD instruction (EVEX encoded version) memory form

   (KL, VL) = (2, 128), (4, 256), (8, 512)
   FOR j := 0 TO KL-1
       i := j * 32
       m := j * 64
       IF k1[j] OR *no writemask*
            THEN DEST[i+31:i] := TruncateQuadWordToDWord (SRC[m+63:m])
            ELSE *DEST[i+31:i] remains unchanged*       ; merging-masking
       FI;
   ENDFOR

VPMOVSQD instruction (EVEX encoded version) reg-reg form

   (KL, VL) = (2, 128), (4, 256), (8, 512)
   FOR j := 0 TO KL-1
       i := j * 32
       m := j * 64
       IF k1[j] OR *no writemask*
            THEN DEST[i+31:i] := SaturateSignedQuadWordToDWord (SRC[m+63:m])
            ELSE 
                IF *merging-masking*                ; merging-masking
                     THEN *DEST[i+31:i] remains unchanged*
                     ELSE *zeroing-masking*              ; zeroing-masking
                         DEST[i+31:i] := 0
                FI
       FI;
   ENDFOR
   DEST[MAXVL-1:VL/2] := 0;

VPMOVSQD instruction (EVEX encoded version) memory form

   (KL, VL) = (2, 128), (4, 256), (8, 512)
   FOR j := 0 TO KL-1
       i := j * 32
       m := j * 64
       IF k1[j] OR *no writemask*
            THEN DEST[i+31:i] := SaturateSignedQuadWordToDWord (SRC[m+63:m])
            ELSE *DEST[i+31:i] remains unchanged*        ; merging-masking
       FI;
   ENDFOR

VPMOVUSQD instruction (EVEX encoded version) reg-reg form

   (KL, VL) = (2, 128), (4, 256), (8, 512)
   FOR j := 0 TO KL-1
       i := j * 32
       m := j * 64
       IF k1[j] OR *no writemask*
            THEN DEST[i+31:i] := SaturateUnsignedQuadWordToDWord (SRC[m+63:m])
            ELSE 
                IF *merging-masking*                ; merging-masking
                     THEN *DEST[i+31:i] remains unchanged*
                     ELSE *zeroing-masking*              ; zeroing-masking
                         DEST[i+31:i] := 0
                FI
       FI;
   ENDFOR
   DEST[MAXVL-1:VL/2] := 0;

VPMOVUSQD instruction (EVEX encoded version) memory form

   (KL, VL) = (2, 128), (4, 256), (8, 512)
   FOR j := 0 TO KL-1
       i := j * 32
       m := j * 64
       IF k1[j] OR *no writemask*
            THEN DEST[i+31:i] := SaturateUnsignedQuadWordToDWord (SRC[m+63:m])
            ELSE *DEST[i+31:i] remains unchanged*        ; merging-masking
       FI;
   ENDFOR

Intel C/C++ Compiler Intrinsic Equivalents

VPMOVQD __m256i _mm512_cvtepi64_epi32( __m512i a);
VPMOVQD __m256i _mm512_mask_cvtepi64_epi32(__m256i s, __mmask8 k, __m512i a);
VPMOVQD __m256i _mm512_maskz_cvtepi64_epi32( __mmask8 k, __m512i a);
VPMOVQD void _mm512_mask_cvtepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
VPMOVSQD __m256i _mm512_cvtsepi64_epi32( __m512i a);
VPMOVSQD __m256i _mm512_mask_cvtsepi64_epi32(__m256i s, __mmask8 k, __m512i a);
VPMOVSQD __m256i _mm512_maskz_cvtsepi64_epi32( __mmask8 k, __m512i a);
VPMOVSQD void _mm512_mask_cvtsepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
VPMOVUSQD __m256i _mm512_cvtusepi64_epi32( __m512i a);
VPMOVUSQD __m256i _mm512_mask_cvtusepi64_epi32(__m256i s, __mmask8 k, __m512i a);
VPMOVUSQD __m256i _mm512_maskz_cvtusepi64_epi32( __mmask8 k, __m512i a);
VPMOVUSQD void _mm512_mask_cvtusepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
VPMOVUSQD __m128i _mm256_cvtusepi64_epi32(__m256i a);
VPMOVUSQD __m128i _mm256_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVUSQD __m128i _mm256_maskz_cvtusepi64_epi32( __mmask8 k, __m256i b);
VPMOVUSQD void _mm256_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVUSQD __m128i _mm_cvtusepi64_epi32(__m128i a);
VPMOVUSQD __m128i _mm_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVUSQD __m128i _mm_maskz_cvtusepi64_epi32( __mmask8 k, __m128i b);
VPMOVUSQD void _mm_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
VPMOVSQD __m128i _mm256_cvtsepi64_epi32(__m256i a);
VPMOVSQD __m128i _mm256_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVSQD __m128i _mm256_maskz_cvtsepi64_epi32( __mmask8 k, __m256i b);
VPMOVSQD void _mm256_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVSQD __m128i _mm_cvtsepi64_epi32(__m128i a);
VPMOVSQD __m128i _mm_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVSQD __m128i _mm_maskz_cvtsepi64_epi32( __mmask8 k, __m128i b);
VPMOVSQD void _mm_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
VPMOVQD __m128i _mm256_cvtepi64_epi32(__m256i a);
VPMOVQD __m128i _mm256_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVQD __m128i _mm256_maskz_cvtepi64_epi32( __mmask8 k, __m256i b);
VPMOVQD void _mm256_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVQD __m128i _mm_cvtepi64_epi32(__m128i a);
VPMOVQD __m128i _mm_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVQD __m128i _mm_maskz_cvtepi64_epi32( __mmask8 k, __m128i b);
VPMOVQD void _mm_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m128i b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

EVEX-encoded instruction, see Table 2-53, "Type E6 Class Exception Conditions."

Additionally:

#UD

If EVEX.vvvv != 1111B.