Opcode/ Instruction |
Op / En |
64/32 bit Mode Support |
CPUID Feature Flag |
Description |
VEX.256.66.0F3A.W0 39 /r ib VEXTRACTI128 xmm1/m128, ymm2, imm8 |
A |
V/V |
AVX2 |
Extract 128 bits of integer data from ymm2 and store results in xmm1/m128. |
EVEX.256.66.0F3A.W0 39 /r ib VEXTRACTI32X4 xmm1/m128 {k1}{z}, ymm2, imm8 |
C |
V/V |
AVX512VL AVX512F |
Extract 128 bits of double-word integer values from ymm2 and store results in xmm1/m128 subject to writemask k1. |
EVEX.512.66.0F3A.W0 39 /r ib VEXTRACTI32x4 xmm1/m128 {k1}{z}, zmm2, imm8 |
C |
V/V |
AVX512F |
Extract 128 bits of double-word integer values from zmm2 and store results in xmm1/m128 subject to writemask k1. |
EVEX.256.66.0F3A.W1 39 /r ib VEXTRACTI64X2 xmm1/m128 {k1}{z}, ymm2, imm8 |
B |
V/V |
AVX512VL AVX512DQ |
Extract 128 bits of quad-word integer values from ymm2 and store results in xmm1/m128 subject to writemask k1. |
EVEX.512.66.0F3A.W1 39 /r ib VEXTRACTI64X2 xmm1/m128 {k1}{z}, zmm2, imm8 |
B |
V/V |
AVX512DQ |
Extract 128 bits of quad-word integer values from zmm2 and store results in xmm1/m128 subject to writemask k1. |
EVEX.512.66.0F3A.W0 3B /r ib VEXTRACTI32X8 ymm1/m256 {k1}{z}, zmm2, imm8 |
D |
V/V |
AVX512DQ |
Extract 256 bits of double-word integer values from zmm2 and store results in ymm1/m256 subject to writemask k1. |
EVEX.512.66.0F3A.W1 3B /r ib VEXTRACTI64x4 ymm1/m256 {k1}{z}, zmm2, imm8 |
C |
V/V |
AVX512F |
Extract 256 bits of quad-word integer values from zmm2 and store results in ymm1/m256 subject to writemask k1. |
Op/En |
Tuple Type |
Operand 1 |
Operand 2 |
Operand 3 |
Operand 4 |
A |
N/A |
ModRM:r/m (w) |
ModRM:reg (r) |
imm8 |
N/A |
B |
Tuple2 |
ModRM:r/m (w) |
ModRM:reg (r) |
imm8 |
N/A |
C |
Tuple4 |
ModRM:r/m (w) |
ModRM:reg (r) |
imm8 |
N/A |
D |
Tuple8 |
ModRM:r/m (w) |
ModRM:reg (r) |
imm8 |
N/A |
VEXTRACTI128/VEXTRACTI32x4 and VEXTRACTI64x2 extract 128-bits of doubleword integer values from the source operand (the second operand) and store to the low 128-bit of the destination operand (the first operand). The 128-bit data extraction occurs at an 128-bit granular offset specified by imm8[0] (256-bit) or imm8[1:0] as the multiply factor. The destination may be either a vector register or an 128-bit memory location.
VEXTRACTI32x4: The low 128-bit of the destination operand is updated at 32-bit granularity according to the writemask.
VEXTRACTI64x2: The low 128-bit of the destination operand is updated at 64-bit granularity according to the writemask.
VEXTRACTI32x8 and VEXTRACTI64x4 extract 256-bits of quadword integer values from the source operand (the second operand) and store to the low 256-bit of the destination operand (the first operand). The 256-bit data extraction occurs at an 256-bit granular offset specified by imm8[0] (256-bit) or imm8[0] as the multiply factor The destination may be either a vector register or a 256-bit memory location.
VEXTRACTI32x8: The low 256-bit of the destination operand is updated at 32-bit granularity according to the writemask.
VEXTRACTI64x4: The low 256-bit of the destination operand is updated at 64-bit granularity according to the writemask.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
The high 7 bits (6 bits in EVEX.512) of the immediate are ignored.
If VEXTRACTI128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will cause an #UD exception.
VL = 256, 512 IF VL = 256 CASE (imm8[0]) OF 0: TMP_DEST[127:0] := SRC1[127:0] 1: TMP_DEST[127:0] := SRC1[255:128] ESAC. FI; IF VL = 512 CASE (imm8[1:0]) OF 00: TMP_DEST[127:0] := SRC1[127:0] 01: TMP_DEST[127:0] := SRC1[255:128] 10: TMP_DEST[127:0] := SRC1[383:256] 11: TMP_DEST[127:0] := SRC1[511:384] ESAC. FI; FOR j := 0 TO 3 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := TMP_DEST[i+31:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:128] := 0
VL = 256, 512 IF VL = 256 CASE (imm8[0]) OF 0: TMP_DEST[127:0] := SRC1[127:0] 1: TMP_DEST[127:0] := SRC1[255:128] ESAC. FI; IF VL = 512 CASE (imm8[1:0]) OF 00: TMP_DEST[127:0] := SRC1[127:0] 01: TMP_DEST[127:0] := SRC1[255:128] 10: TMP_DEST[127:0] := SRC1[383:256] 11: TMP_DEST[127:0] := SRC1[511:384] ESAC. FI; FOR j := 0 TO 3 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := TMP_DEST[i+31:i] ELSE *DEST[i+31:i] remains unchanged* ; merging-masking FI; ENDFOR
VL = 256, 512 IF VL = 256 CASE (imm8[0]) OF 0: TMP_DEST[127:0] := SRC1[127:0] 1: TMP_DEST[127:0] := SRC1[255:128] ESAC. FI; IF VL = 512 CASE (imm8[1:0]) OF 00: TMP_DEST[127:0] := SRC1[127:0] 01: TMP_DEST[127:0] := SRC1[255:128] 10: TMP_DEST[127:0] := SRC1[383:256] 11: TMP_DEST[127:0] := SRC1[511:384] ESAC. FI; FOR j := 0 TO 1 i := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := TMP_DEST[i+63:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+63:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:128] := 0
VL = 256, 512 IF VL = 256 CASE (imm8[0]) OF 0: TMP_DEST[127:0] := SRC1[127:0] 1: TMP_DEST[127:0] := SRC1[255:128] ESAC. FI; IF VL = 512 CASE (imm8[1:0]) OF 00: TMP_DEST[127:0] := SRC1[127:0] 01: TMP_DEST[127:0] := SRC1[255:128] 10: TMP_DEST[127:0] := SRC1[383:256] 11: TMP_DEST[127:0] := SRC1[511:384] ESAC. FI; FOR j := 0 TO 1 i := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := TMP_DEST[i+63:i] ELSE *DEST[i+63:i] remains unchanged* ; merging-masking FI; ENDFOR
VL = 512 CASE (imm8[0]) OF 0: TMP_DEST[255:0] := SRC1[255:0] 1: TMP_DEST[255:0] := SRC1[511:256] ESAC. FOR j := 0 TO 7 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := TMP_DEST[i+31:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:256] := 0
CASE (imm8[0]) OF 0: TMP_DEST[255:0] := SRC1[255:0] 1: TMP_DEST[255:0] := SRC1[511:256] ESAC. FOR j := 0 TO 7 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := TMP_DEST[i+31:i] ELSE *DEST[i+31:i] remains unchanged* ; merging-masking FI; ENDFOR
VL = 512 CASE (imm8[0]) OF 0: TMP_DEST[255:0] := SRC1[255:0] 1: TMP_DEST[255:0] := SRC1[511:256] ESAC. FOR j := 0 TO 3 i := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := TMP_DEST[i+63:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+63:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:256] := 0
CASE (imm8[0]) OF 0: TMP_DEST[255:0] := SRC1[255:0] 1: TMP_DEST[255:0] := SRC1[511:256] ESAC. FOR j := 0 TO 3 i := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := TMP_DEST[i+63:i] ELSE *DEST[i+63:i] remains unchanged* ; merging-masking FI; ENDFOR
CASE (imm8[0]) OF 0: DEST[127:0] := SRC1[127:0] 1: DEST[127:0] := SRC1[255:128] ESAC.
CASE (imm8[0]) OF 0: DEST[127:0] := SRC1[127:0] 1: DEST[127:0] := SRC1[255:128] ESAC. DEST[MAXVL-1:128] := 0
VEXTRACTI32x4 __m128i _mm512_extracti32x4_epi32(__m512i a, const int nidx); VEXTRACTI32x4 __m128i _mm512_mask_extracti32x4_epi32(__m128i s, __mmask8 k, __m512i a, const int nidx); VEXTRACTI32x4 __m128i _mm512_maskz_extracti32x4_epi32( __mmask8 k, __m512i a, const int nidx); VEXTRACTI32x4 __m128i _mm256_extracti32x4_epi32(__m256i a, const int nidx); VEXTRACTI32x4 __m128i _mm256_mask_extracti32x4_epi32(__m128i s, __mmask8 k, __m256i a, const int nidx); VEXTRACTI32x4 __m128i _mm256_maskz_extracti32x4_epi32( __mmask8 k, __m256i a, const int nidx); VEXTRACTI32x8 __m256i _mm512_extracti32x8_epi32(__m512i a, const int nidx); VEXTRACTI32x8 __m256i _mm512_mask_extracti32x8_epi32(__m256i s, __mmask8 k, __m512i a, const int nidx); VEXTRACTI32x8 __m256i _mm512_maskz_extracti32x8_epi32( __mmask8 k, __m512i a, const int nidx); VEXTRACTI64x2 __m128i _mm512_extracti64x2_epi64(__m512i a, const int nidx); VEXTRACTI64x2 __m128i _mm512_mask_extracti64x2_epi64(__m128i s, __mmask8 k, __m512i a, const int nidx); VEXTRACTI64x2 __m128i _mm512_maskz_extracti64x2_epi64( __mmask8 k, __m512i a, const int nidx); VEXTRACTI64x2 __m128i _mm256_extracti64x2_epi64(__m256i a, const int nidx); VEXTRACTI64x2 __m128i _mm256_mask_extracti64x2_epi64(__m128i s, __mmask8 k, __m256i a, const int nidx); VEXTRACTI64x2 __m128i _mm256_maskz_extracti64x2_epi64( __mmask8 k, __m256i a, const int nidx); VEXTRACTI64x4 __m256i _mm512_extracti64x4_epi64(__m512i a, const int nidx); VEXTRACTI64x4 __m256i _mm512_mask_extracti64x4_epi64(__m256i s, __mmask8 k, __m512i a, const int nidx); VEXTRACTI64x4 __m256i _mm512_maskz_extracti64x4_epi64( __mmask8 k, __m512i a, const int nidx); VEXTRACTI128 __m128i _mm256_extracti128_si256(__m256i a, int offset);
None
VEX-encoded instructions, see Table 2-23, "Type 6 Class Exception Conditions." |
|
EVEX-encoded instructions, see Table 2-54, "Type E6NF Class Exception Conditions." |
|
Additionally: |
|
#UD |
IF VEX.L = 0. |
#UD |
If VEX.vvvv != 1111B or EVEX.vvvv != 1111B. |