Opcode/ Instruction |
Op / En |
64/32 bit Mode Support |
CPUID Feature Flag |
Description |
NP 0F 14 /r UNPCKLPS xmm1, xmm2/m128 |
A |
V/V |
SSE |
Unpacks and Interleaves single precision floating-point values from low quadwords of xmm1 and xmm2/m128. |
VEX.128.0F.WIG 14 /r VUNPCKLPS xmm1,xmm2, xmm3/m128 |
B |
V/V |
AVX |
Unpacks and Interleaves single precision floating-point values from low quadwords of xmm2 and xmm3/m128. |
VEX.256.0F.WIG 14 /r VUNPCKLPS ymm1,ymm2,ymm3/m256 |
B |
V/V |
AVX |
Unpacks and Interleaves single precision floating-point values from low quadwords of ymm2 and ymm3/m256. |
EVEX.128.0F.W0 14 /r VUNPCKLPS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst |
C |
V/V |
AVX512VL AVX512F |
Unpacks and Interleaves single precision floating-point values from low quadwords of xmm2 and xmm3/mem and write result to xmm1 subject to write mask k1. |
EVEX.256.0F.W0 14 /r VUNPCKLPS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst |
C |
V/V |
AVX512VL AVX512F |
Unpacks and Interleaves single precision floating-point values from low quadwords of ymm2 and ymm3/mem and write result to ymm1 subject to write mask k1. |
EVEX.512.0F.W0 14 /r VUNPCKLPS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst |
C |
V/V |
AVX512F |
Unpacks and Interleaves single precision floating-point values from low quadwords of zmm2 and zmm3/m512/m32bcst and write result to zmm1 subject to write mask k1. |
Op/En |
Tuple Type |
Operand 1 |
Operand 2 |
Operand 3 |
Operand 4 |
A |
N/A |
ModRM:reg (r, w) |
ModRM:r/m (r) |
N/A |
N/A |
B |
N/A |
ModRM:reg (w) |
VEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
C |
Full |
ModRM:reg (w) |
EVEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
Performs an interleaved unpack of the low single precision floating-point values from the first source operand and the second source operand.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti- nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified. When unpacking from a memory operand, an implementation may fetch only the appropriate 64 bits; however, alignment to 16-byte boundary and normal segment checking will still be enforced.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register.
X7 X6 X5 X4 X3 X2 X1 X0 SRC1 SRC2 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 DEST Y5 X5 Y4 X4 Y1 X1 Y0 X0 |
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit memory location. The destina- tion operand is a ZMM register, conditionally updated using writemask k1.
EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register, a 256-bit memory location, or a 256-bit vector broadcasted from a 32-bit memory location. The destina- tion operand is a YMM register, conditionally updated using writemask k1.
EVEX.128 encoded version: The first source operand is an XMM register. The second source operand is a XMM register, a 128-bit memory location, or a 128-bit vector broadcasted from a 32-bit memory location. The destina- tion operand is a XMM register, conditionally updated using writemask k1.
(KL, VL) = (4, 128), (8, 256), (16, 512) IF VL >= 128 TMP_DEST[31:0] := SRC1[31:0] TMP_DEST[63:32] := SRC2[31:0] TMP_DEST[95:64] := SRC1[63:32] TMP_DEST[127:96] := SRC2[63:32] FI; IF VL >= 256 TMP_DEST[159:128] := SRC1[159:128] TMP_DEST[191:160] := SRC2[159:128] TMP_DEST[223:192] := SRC1[191:160] TMP_DEST[255:224] := SRC2[191:160] FI; IF VL >= 512 TMP_DEST[287:256] := SRC1[287:256] TMP_DEST[319:288] := SRC2[287:256] TMP_DEST[351:320] := SRC1[319:288] TMP_DEST[383:352] := SRC2[319:288] TMP_DEST[415:384] := SRC1[415:384] TMP_DEST[447:416] := SRC2[415:384] TMP_DEST[479:448] := SRC1[447:416] TMP_DEST[511:480] := SRC2[447:416] FI; FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := TMP_DEST[i+31:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 31 IF (EVEX.b = 1) THEN TMP_SRC2[i+31:i] := SRC2[31:0] ELSE TMP_SRC2[i+31:i] := SRC2[i+31:i] FI; ENDFOR; IF VL >= 128 TMP_DEST[31:0] := SRC1[31:0] TMP_DEST[63:32] := TMP_SRC2[31:0] TMP_DEST[95:64] := SRC1[63:32] TMP_DEST[127:96] := TMP_SRC2[63:32] FI; IF VL >= 256 TMP_DEST[159:128] := SRC1[159:128] TMP_DEST[191:160] := TMP_SRC2[159:128] TMP_DEST[223:192] := SRC1[191:160] TMP_DEST[255:224] := TMP_SRC2[191:160] FI; IF VL >= 512 TMP_DEST[287:256] := SRC1[287:256] TMP_DEST[319:288] := TMP_SRC2[287:256] TMP_DEST[351:320] := SRC1[319:288] TMP_DEST[383:352] := TMP_SRC2[319:288] TMP_DEST[415:384] := SRC1[415:384] TMP_DEST[447:416] := TMP_SRC2[415:384] TMP_DEST[479:448] := SRC1[447:416] TMP_DEST[511:480] := TMP_SRC2[447:416] FI; FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := TMP_DEST[i+31:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
DEST[31:0] := SRC1[31:0] DEST[63:32] := SRC2[31:0] DEST[95:64] := SRC1[63:32] DEST[127:96] := SRC2[63:32] DEST[159:128] := SRC1[159:128] DEST[191:160] := SRC2[159:128] DEST[223:192] := SRC1[191:160] DEST[255:224] := SRC2[191:160] DEST[MAXVL-1:256] := 0
DEST[31:0] := SRC1[31:0] DEST[63:32] := SRC2[31:0] DEST[95:64] := SRC1[63:32] DEST[127:96] := SRC2[63:32] DEST[MAXVL-1:128] := 0
DEST[31:0] := SRC1[31:0] DEST[63:32] := SRC2[31:0] DEST[95:64] := SRC1[63:32] DEST[127:96] := SRC2[63:32] DEST[MAXVL-1:128] (Unmodified)
VUNPCKLPS __m512 _mm512_unpacklo_ps(__m512 a, __m512 b); VUNPCKLPS __m512 _mm512_mask_unpacklo_ps(__m512 s, __mmask16 k, __m512 a, __m512 b); VUNPCKLPS __m512 _mm512_maskz_unpacklo_ps(__mmask16 k, __m512 a, __m512 b); VUNPCKLPS __m256 _mm256_unpacklo_ps (__m256 a, __m256 b); VUNPCKLPS __m256 _mm256_mask_unpacklo_ps(__m256 s, __mmask8 k, __m256 a, __m256 b); VUNPCKLPS __m256 _mm256_maskz_unpacklo_ps(__mmask8 k, __m256 a, __m256 b); UNPCKLPS __m128 _mm_unpacklo_ps (__m128 a, __m128 b); VUNPCKLPS __m128 _mm_mask_unpacklo_ps(__m128 s, __mmask8 k, __m128 a, __m128 b); VUNPCKLPS __m128 _mm_maskz_unpacklo_ps(__mmask8 k, __m128 a, __m128 b);
None.
Non-EVEX-encoded instructions, see Table 2-21, "Type 4 Class Exception Conditions." EVEX-encoded instructions, see Table 2-50, "Type E4NF Class Exception Conditions."