UNPCKLPS - Unpack and Interleave Low Packed Single Precision Floating-Point Values

Opcode/ Instruction

Op / En

64/32 bit Mode Support

CPUID Feature Flag

Description

NP 0F 14 /r UNPCKLPS xmm1, xmm2/m128

A

V/V

SSE

Unpacks and Interleaves single precision floating-point values from low quadwords of xmm1 and xmm2/m128.

VEX.128.0F.WIG 14 /r VUNPCKLPS xmm1,xmm2, xmm3/m128

B

V/V

AVX

Unpacks and Interleaves single precision floating-point values from low quadwords of xmm2 and xmm3/m128.

VEX.256.0F.WIG 14 /r VUNPCKLPS ymm1,ymm2,ymm3/m256

B

V/V

AVX

Unpacks and Interleaves single precision floating-point values from low quadwords of ymm2 and ymm3/m256.

EVEX.128.0F.W0 14 /r VUNPCKLPS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst

C

V/V

AVX512VL AVX512F

Unpacks and Interleaves single precision floating-point values from low quadwords of xmm2 and xmm3/mem and write result to xmm1 subject to write mask k1.

EVEX.256.0F.W0 14 /r VUNPCKLPS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst

C

V/V

AVX512VL AVX512F

Unpacks and Interleaves single precision floating-point values from low quadwords of ymm2 and ymm3/mem and write result to ymm1 subject to write mask k1.

EVEX.512.0F.W0 14 /r VUNPCKLPS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst

C

V/V

AVX512F

Unpacks and Interleaves single precision floating-point values from low quadwords of zmm2 and zmm3/m512/m32bcst and write result to zmm1 subject to write mask k1.

Instruction Operand Encoding

Op/En

Tuple Type

Operand 1

Operand 2

Operand 3

Operand 4

A

N/A

ModRM:reg (r, w)

ModRM:r/m (r)

N/A

N/A

B

N/A

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

N/A

C

Full

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

N/A

Description

Performs an interleaved unpack of the low single precision floating-point values from the first source operand and the second source operand.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti- nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified. When unpacking from a memory operand, an implementation may fetch only the appropriate 64 bits; however, alignment to 16-byte boundary and normal segment checking will still be enforced.

VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register.

X7

X6

X5

X4

X3

X2

X1

X0

SRC1

SRC2

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

DEST

Y5

X5

Y4

X4

Y1

X1

Y0

X0

Figure 4-28. VUNPCKLPS Operation

EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit memory location. The destina- tion operand is a ZMM register, conditionally updated using writemask k1.

EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register, a 256-bit memory location, or a 256-bit vector broadcasted from a 32-bit memory location. The destina- tion operand is a YMM register, conditionally updated using writemask k1.

EVEX.128 encoded version: The first source operand is an XMM register. The second source operand is a XMM register, a 128-bit memory location, or a 128-bit vector broadcasted from a 32-bit memory location. The destina- tion operand is a XMM register, conditionally updated using writemask k1.

Operation

VUNPCKLPS (EVEX Encoded Version When SRC2 is a ZMM Register)

(KL, VL) = (4, 128), (8, 256), (16, 512)
IF VL >= 128
   TMP_DEST[31:0] := SRC1[31:0]
   TMP_DEST[63:32] := SRC2[31:0]
   TMP_DEST[95:64] := SRC1[63:32]
   TMP_DEST[127:96] := SRC2[63:32]
FI;
IF VL >= 256
   TMP_DEST[159:128] := SRC1[159:128]
   TMP_DEST[191:160] := SRC2[159:128]
   TMP_DEST[223:192] := SRC1[191:160]
   TMP_DEST[255:224] := SRC2[191:160]
FI;
IF VL >= 512
   TMP_DEST[287:256] := SRC1[287:256]
   TMP_DEST[319:288] := SRC2[287:256]
   TMP_DEST[351:320] := SRC1[319:288]
   TMP_DEST[383:352] := SRC2[319:288]
   TMP_DEST[415:384] := SRC1[415:384]
   TMP_DEST[447:416] := SRC2[415:384]
   TMP_DEST[479:448] := SRC1[447:416]
   TMP_DEST[511:480] := SRC2[447:416]
FI;
FOR j := 0 TO KL-1
   i := j * 32
   IF k1[j] OR *no writemask*
       THEN DEST[i+31:i] := TMP_DEST[i+31:i]
       ELSE 
            IF *merging-masking*                ; merging-masking
                THEN *DEST[i+31:i] remains unchanged*
                ELSE *zeroing-masking*              ; zeroing-masking
                     DEST[i+31:i] := 0
            FI
   FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VUNPCKLPS (EVEX Encoded Version When SRC2 is Memory)

(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1
   i := j * 31
   IF (EVEX.b = 1)
       THEN TMP_SRC2[i+31:i] := SRC2[31:0]
       ELSE TMP_SRC2[i+31:i] := SRC2[i+31:i]
   FI;
ENDFOR;
IF VL >= 128
TMP_DEST[31:0] := SRC1[31:0]
TMP_DEST[63:32] := TMP_SRC2[31:0]
TMP_DEST[95:64] := SRC1[63:32]
TMP_DEST[127:96] := TMP_SRC2[63:32]
FI;
IF VL >= 256
   TMP_DEST[159:128] := SRC1[159:128]
   TMP_DEST[191:160] := TMP_SRC2[159:128]
   TMP_DEST[223:192] := SRC1[191:160]
   TMP_DEST[255:224] := TMP_SRC2[191:160]
FI;
IF VL >= 512
   TMP_DEST[287:256] := SRC1[287:256]
   TMP_DEST[319:288] := TMP_SRC2[287:256]
   TMP_DEST[351:320] := SRC1[319:288]
   TMP_DEST[383:352] := TMP_SRC2[319:288]
   TMP_DEST[415:384] := SRC1[415:384]
   TMP_DEST[447:416] := TMP_SRC2[415:384]
   TMP_DEST[479:448] := SRC1[447:416]
   TMP_DEST[511:480] := TMP_SRC2[447:416]
FI;
FOR j := 0 TO KL-1
   i := j * 32
   IF k1[j] OR *no writemask*
       THEN DEST[i+31:i] := TMP_DEST[i+31:i]
       ELSE 
            IF *merging-masking*                ; merging-masking
                THEN *DEST[i+31:i] remains unchanged*
                ELSE *zeroing-masking*              ; zeroing-masking
                     DEST[i+31:i] := 0
            FI
   FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

UNPCKLPS (VEX.256 Encoded Version)

DEST[31:0] := SRC1[31:0]
DEST[63:32] := SRC2[31:0]
DEST[95:64] := SRC1[63:32]
DEST[127:96] := SRC2[63:32]
DEST[159:128] := SRC1[159:128]
DEST[191:160] := SRC2[159:128]
DEST[223:192] := SRC1[191:160]
DEST[255:224] := SRC2[191:160]
DEST[MAXVL-1:256] := 0

VUNPCKLPS (VEX.128 Encoded Version)

DEST[31:0] := SRC1[31:0]
DEST[63:32] := SRC2[31:0]
DEST[95:64] := SRC1[63:32]
DEST[127:96] := SRC2[63:32]
DEST[MAXVL-1:128] := 0

UNPCKLPS (128-bit Legacy SSE Version)

DEST[31:0] := SRC1[31:0]
DEST[63:32] := SRC2[31:0]
DEST[95:64] := SRC1[63:32]
DEST[127:96] := SRC2[63:32]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VUNPCKLPS __m512 _mm512_unpacklo_ps(__m512 a, __m512 b);
VUNPCKLPS __m512 _mm512_mask_unpacklo_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VUNPCKLPS __m512 _mm512_maskz_unpacklo_ps(__mmask16 k, __m512 a, __m512 b);
VUNPCKLPS __m256 _mm256_unpacklo_ps (__m256 a, __m256 b);
VUNPCKLPS __m256 _mm256_mask_unpacklo_ps(__m256 s, __mmask8 k, __m256 a, __m256 b);
VUNPCKLPS __m256 _mm256_maskz_unpacklo_ps(__mmask8 k, __m256 a, __m256 b);
UNPCKLPS __m128 _mm_unpacklo_ps (__m128 a, __m128 b);
VUNPCKLPS __m128 _mm_mask_unpacklo_ps(__m128 s, __mmask8 k, __m128 a, __m128 b);
VUNPCKLPS __m128 _mm_maskz_unpacklo_ps(__mmask8 k, __m128 a, __m128 b);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instructions, see Table 2-21, "Type 4 Class Exception Conditions." EVEX-encoded instructions, see Table 2-50, "Type E4NF Class Exception Conditions."