Opcode/ Instruction |
Op / En |
64/32 bit Mode Support |
CPUID Feature Flag |
Description |
F3 0F 51 /r SQRTSS xmm1, xmm2/m32 |
A |
V/V |
SSE |
Computes square root of the low single precision floating-point value in xmm2/m32 and stores the results in xmm1. |
VEX.LIG.F3.0F.WIG 51 /r VSQRTSS xmm1, xmm2, xmm3/m32 |
B |
V/V |
AVX |
Computes square root of the low single precision floating-point value in xmm3/m32 and stores the results in xmm1. Also, upper single precision floating-point values (bits[127:32]) from xmm2 are copied to xmm1[127:32]. |
EVEX.LLIG.F3.0F.W0 51 /r VSQRTSS xmm1 {k1}{z}, xmm2, xmm3/m32{er} |
C |
V/V |
AVX512F |
Computes square root of the low single precision floating-point value in xmm3/m32 and stores the results in xmm1 under writemask k1. Also, upper single precision floating-point values (bits[127:32]) from xmm2 are copied to xmm1[127:32]. |
Op/En |
Tuple Type |
Operand 1 |
Operand 2 |
Operand 3 |
Operand 4 |
A |
N/A |
ModRM:reg (w) |
ModRM:r/m (r) |
N/A |
N/A |
B |
N/A |
ModRM:reg (w) |
VEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
C |
Tuple1 Scalar |
ModRM:reg (w) |
EVEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
Computes the square root of the low single precision floating-point value in the second source operand and stores the single precision floating-point result in the destination operand. The second source operand can be an XMM register or a 32-bit memory location. The first source and destination operands is an XMM register.
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAXVL- 1:32) of the corresponding YMM destination register remain unchanged.
VEX.128 and EVEX encoded versions: Bits 127:32 of the destination operand are copied from the corresponding bits of the first source operand. Bits (MAXVL-1:128) of the destination ZMM register are zeroed.
EVEX encoded version: The low doubleword element of the destination operand is updated according to the write- mask.
Software should ensure VSQRTSS is encoded with VEX.L=0. Encoding VSQRTSS with VEX.L=1 may encounter unpredictable behavior across different processor generations.
IF (EVEX.b = 1) AND (SRC2 *is register*) THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; IF k1[0] or *no writemask* THEN DEST[31:0] := SQRT(SRC2[31:0]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[31:0] remains unchanged* ELSE ; zeroing-masking DEST[31:0] := 0 FI; FI; DEST[127:32] := SRC1[127:32] DEST[MAXVL-1:128] := 0
DEST[31:0] := SQRT(SRC2[31:0]) DEST[127:32] := SRC1[127:32] DEST[MAXVL-1:128] := 0
DEST[31:0] := SQRT(SRC2[31:0]) DEST[MAXVL-1:32] (Unmodified)
VSQRTSS __m128 _mm_sqrt_round_ss(__m128 a, __m128 b, int r); VSQRTSS __m128 _mm_mask_sqrt_round_ss(__m128 s, __mmask8 k, __m128 a, __m128 b, int r); VSQRTSS __m128 _mm_maskz_sqrt_round_ss( __mmask8 k, __m128 a, __m128 b, int r); SQRTSS __m128 _mm_sqrt_ss(__m128 a)
Invalid, Precision, Denormal.
Non-EVEX-encoded instruction, see Table 2-20, "Type 3 Class Exception Conditions." EVEX-encoded instruction, see Table 2-47, "Type E3 Class Exception Conditions."