Opcode/ Instruction |
Op/ En |
64/32 bit Mode Support |
CPUID Feature Flag |
Description |
NP 0F EF /r1 PXOR mm, mm/m64 |
A |
V/V |
MMX |
Bitwise XOR of mm/m64 and mm. |
66 0F EF /r PXOR xmm1, xmm2/m128 |
A |
V/V |
SSE2 |
Bitwise XOR of xmm2/m128 and xmm1. |
VEX.128.66.0F.WIG EF /r VPXOR xmm1, xmm2, xmm3/m128 |
B |
V/V |
AVX |
Bitwise XOR of xmm3/m128 and xmm2. |
VEX.256.66.0F.WIG EF /r VPXOR ymm1, ymm2, ymm3/m256 |
B |
V/V |
AVX2 |
Bitwise XOR of ymm3/m256 and ymm2. |
EVEX.128.66.0F.W0 EF /r VPXORD xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst |
C |
V/V |
AVX512VL AVX512F |
Bitwise XOR of packed doubleword integers in xmm2 and xmm3/m128 using writemask k1. |
EVEX.256.66.0F.W0 EF /r VPXORD ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst |
C |
V/V |
AVX512VL AVX512F |
Bitwise XOR of packed doubleword integers in ymm2 and ymm3/m256 using writemask k1. |
EVEX.512.66.0F.W0 EF /r VPXORD zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst |
C |
V/V |
AVX512F |
Bitwise XOR of packed doubleword integers in zmm2 and zmm3/m512/m32bcst using writemask k1. |
EVEX.128.66.0F.W1 EF /r VPXORQ xmm1 {k1}{z}, xmm2, xmm3/m128/m64bcst |
C |
V/V |
AVX512VL AVX512F |
Bitwise XOR of packed quadword integers in xmm2 and xmm3/m128 using writemask k1. |
EVEX.256.66.0F.W1 EF /r VPXORQ ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcst |
C |
V/V |
AVX512VL AVX512F |
Bitwise XOR of packed quadword integers in ymm2 and ymm3/m256 using writemask k1. |
EVEX.512.66.0F.W1 EF /r VPXORQ zmm1 {k1}{z}, zmm2, zmm3/m512/m64bcst |
C |
V/V |
AVX512F |
Bitwise XOR of packed quadword integers in zmm2 and zmm3/m512/m64bcst using writemask k1. |
1. See note in Section 2.5, "Intel® AVX and Intel® SSE Instruction Exception Classification," in the Intel® 64 and IA-32 Architectures Soft-
ware Developer's Manual, Volume 2A, and Section 23.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters," in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3B.
Op/En |
Tuple Type |
Operand 1 |
Operand 2 |
Operand 3 |
Operand 4 |
A |
N/A |
ModRM:reg (r, w) |
ModRM:r/m (r) |
N/A |
N/A |
B |
N/A |
ModRM:reg (w) |
VEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
C |
Full |
ModRM:reg (w) |
EVEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
Performs a bitwise logical exclusive-OR (XOR) operation on the source operand (second operand) and the destina- tion operand (first operand) and stores the result in the destination operand. Each bit of the result is 1 if the corre- sponding bits of the two operands are different; each bit is 0 if the corresponding bits of the operands are the same.
In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).
Legacy SSE instructions 64-bit operand: The source operand can be an MMX technology register or a 64-bit memory location. The destination operand is an MMX technology register.
128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM desti- nation register remain unchanged.
VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first source operand and destination operands are XMM registers. Bits (MAXVL-1:128) of the destination YMM register are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding register destination are zeroed.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with write- mask k1.
DEST := DEST XOR SRC
DEST := DEST XOR SRC DEST[MAXVL-1:128] (Unmodified)
DEST := SRC1 XOR SRC2 DEST[MAXVL-1:128] := 0
DEST := SRC1 XOR SRC2 DEST[MAXVL-1:256] := 0
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) AND (SRC2 *is memory*) THEN DEST[i+31:i] := SRC1[i+31:i] BITWISE XOR SRC2[31:0] ELSE DEST[i+31:i] := SRC1[i+31:i] BITWISE XOR SRC2[i+31:i] FI; ELSE IF *merging-masking* ; merging-masking THEN *DEST[31:0] remains unchanged* ELSE ; zeroing-masking DEST[31:0] := 0 FI; FI; ENDFOR; DEST[MAXVL-1:VL] := 0
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) AND (SRC2 *is memory*) THEN DEST[i+63:i] := SRC1[i+63:i] BITWISE XOR SRC2[63:0] ELSE DEST[i+63:i] := SRC1[i+63:i] BITWISE XOR SRC2[i+63:i] FI; ELSE IF *merging-masking* ; merging-masking THEN *DEST[63:0] remains unchanged* ELSE ; zeroing-masking DEST[63:0] := 0 FI; FI; ENDFOR; DEST[MAXVL-1:VL] := 0
VPXORD __m512i _mm512_xor_epi32(__m512i a, __m512i b) VPXORD __m512i _mm512_mask_xor_epi32(__m512i s, __mmask16 m, __m512i a, __m512i b) VPXORD __m512i _mm512_maskz_xor_epi32( __mmask16 m, __m512i a, __m512i b) VPXORD __m256i _mm256_xor_epi32(__m256i a, __m256i b) VPXORD __m256i _mm256_mask_xor_epi32(__m256i s, __mmask8 m, __m256i a, __m256i b) VPXORD __m256i _mm256_maskz_xor_epi32( __mmask8 m, __m256i a, __m256i b) VPXORD __m128i _mm_xor_epi32(__m128i a, __m128i b) VPXORD __m128i _mm_mask_xor_epi32(__m128i s, __mmask8 m, __m128i a, __m128i b) VPXORD __m128i _mm_maskz_xor_epi32( __mmask16 m, __m128i a, __m128i b) VPXORQ __m512i _mm512_xor_epi64( __m512i a, __m512i b); VPXORQ __m512i _mm512_mask_xor_epi64(__m512i s, __mmask8 m, __m512i a, __m512i b); VPXORQ __m512i _mm512_maskz_xor_epi64(__mmask8 m, __m512i a, __m512i b); VPXORQ __m256i _mm256_xor_epi64( __m256i a, __m256i b); VPXORQ __m256i _mm256_mask_xor_epi64(__m256i s, __mmask8 m, __m256i a, __m256i b); VPXORQ __m256i _mm256_maskz_xor_epi64(__mmask8 m, __m256i a, __m256i b); VPXORQ __m128i _mm_xor_epi64( __m128i a, __m128i b); VPXORQ __m128i _mm_mask_xor_epi64(__m128i s, __mmask8 m, __m128i a, __m128i b); VPXORQ __m128i _mm_maskz_xor_epi64(__mmask8 m, __m128i a, __m128i b); PXOR:__m64 _mm_xor_si64 (__m64 m1, __m64 m2) (V)PXOR:__m128i _mm_xor_si128 ( __m128i a, __m128i b) VPXOR:__m256i _mm256_xor_si256 ( __m256i a, __m256i b)
None.
None.
Non-EVEX-encoded instruction, see Table 2-21, "Type 4 Class Exception Conditions." EVEX-encoded instruction, see Table 2-49, "Type E4 Class Exception Conditions."