Opcode/ Instruction |
Op/ En |
64/32 bit Mode Support |
CPUID Feature Flag |
Description |
NP 0F D5 /r1 PMULLW mm, mm/m64 |
A |
V/V |
MMX |
Multiply the packed signed word integers in mm1 register and mm2/m64, and store the low 16 bits of the results in mm1. |
66 0F D5 /r PMULLW xmm1, xmm2/m128 |
A |
V/V |
SSE2 |
Multiply the packed signed word integers in xmm1 and xmm2/m128, and store the low 16 bits of the results in xmm1. |
VEX.128.66.0F.WIG D5 /r VPMULLW xmm1, xmm2, xmm3/m128 |
B |
V/V |
AVX |
Multiply the packed dword signed integers in xmm2 and xmm3/m128 and store the low 32 bits of each product in xmm1. |
VEX.256.66.0F.WIG D5 /r VPMULLW ymm1, ymm2, ymm3/m256 |
B |
V/V |
AVX2 |
Multiply the packed signed word integers in ymm2 and ymm3/m256, and store the low 16 bits of the results in ymm1. |
EVEX.128.66.0F.WIG D5 /r VPMULLW xmm1 {k1}{z}, xmm2, xmm3/m128 |
C |
V/V |
AVX512VL AVX512BW |
Multiply the packed signed word integers in xmm2 and xmm3/m128, and store the low 16 bits of the results in xmm1 under writemask k1. |
EVEX.256.66.0F.WIG D5 /r VPMULLW ymm1 {k1}{z}, ymm2, ymm3/m256 |
C |
V/V |
AVX512VL AVX512BW |
Multiply the packed signed word integers in ymm2 and ymm3/m256, and store the low 16 bits of the results in ymm1 under writemask k1. |
EVEX.512.66.0F.WIG D5 /r VPMULLW zmm1 {k1}{z}, zmm2, zmm3/m512 |
C |
V/V |
AVX512BW Multiply the packed signed word integers in zmm2 and zmm3/m512, and store the low 16 bits of the results in zmm1 under writemask k1. |
1. See note in Section 2.5, "Intel® AVX and Intel® SSE Instruction Exception Classification," in the Intel® 64 and IA-32 Architectures Soft-
ware Developer's Manual, Volume 2A, and Section 23.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-
isters," in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3B.
Op/En |
Tuple Type |
Operand 1 |
Operand 2 |
Operand 3 |
Operand 4 |
A |
N/A |
ModRM:reg (r, w) |
ModRM:r/m (r) |
N/A |
N/A |
B |
N/A |
ModRM:reg (w) |
VEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
C |
Full Mem |
ModRM:reg (w) |
EVEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
Performs a SIMD signed multiply of the packed signed word integers in the destination operand (first operand) and the source operand (second operand), and stores the low 16 bits of each intermediate 32-bit result in the destina- tion operand. (Figure 4-12 shows this operation when using 64-bit operands.)
In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).
Legacy SSE version 64-bit operand: The source operand can be an MMX technology register or a 64-bit memory location. The destination operand is an MMX technology register.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destina- tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are zeroed. VEX.L must be 0, otherwise the instruction will #UD.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is conditionally updated based on writemask k1.
TEMP0[31:0] := DEST[15:0] * SRC[15:0]; (* Signed multiplication *) TEMP1[31:0] := DEST[31:16] * SRC[31:16]; TEMP2[31:0] := DEST[47:32] * SRC[47:32]; TEMP3[31:0] := DEST[63:48] * SRC[63:48]; DEST[15:0] := TEMP0[15:0]; DEST[31:16] := TEMP1[15:0]; DEST[47:32] := TEMP2[15:0]; DEST[63:48] := TEMP3[15:0];
TEMP0[31:0] := DEST[15:0] * SRC[15:0]; (* Signed multiplication *) TEMP1[31:0] := DEST[31:16] * SRC[31:16]; TEMP2[31:0] := DEST[47:32] * SRC[47:32]; TEMP3[31:0] := DEST[63:48] * SRC[63:48]; TEMP4[31:0] := DEST[79:64] * SRC[79:64]; TEMP5[31:0] := DEST[95:80] * SRC[95:80]; TEMP6[31:0] := DEST[111:96] * SRC[111:96]; TEMP7[31:0] := DEST[127:112] * SRC[127:112]; DEST[15:0] := TEMP0[15:0]; DEST[31:16] := TEMP1[15:0]; DEST[47:32] := TEMP2[15:0]; DEST[63:48] := TEMP3[15:0]; DEST[79:64] := TEMP4[15:0]; DEST[95:80] := TEMP5[15:0]; DEST[111:96] := TEMP6[15:0]; DEST[127:112] := TEMP7[15:0]; DEST[MAXVL-1:256] := 0
Temp0[31:0] := SRC1[15:0] * SRC2[15:0] Temp1[31:0] := SRC1[31:16] * SRC2[31:16] Temp2[31:0] := SRC1[47:32] * SRC2[47:32] Temp3[31:0] := SRC1[63:48] * SRC2[63:48] Temp4[31:0] := SRC1[79:64] * SRC2[79:64] Temp5[31:0] := SRC1[95:80] * SRC2[95:80] Temp6[31:0] := SRC1[111:96] * SRC2[111:96] Temp7[31:0] := SRC1[127:112] * SRC2[127:112] DEST[15:0] := Temp0[15:0] DEST[31:16] := Temp1[15:0] DEST[47:32] := Temp2[15:0] DEST[63:48] := Temp3[15:0] DEST[79:64] := Temp4[15:0] DEST[95:80] := Temp5[15:0] DEST[111:96] := Temp6[15:0] DEST[127:112] := Temp7[15:0] DEST[MAXVL-1:128] := 0
(KL, VL) = (8, 128), (16, 256), (32, 512) FOR j := 0 TO KL-1 i := j * 16 IF k1[j] OR *no writemask* THEN temp[31:0] := SRC1[i+15:i] * SRC2[i+15:i] DEST[i+15:i] := temp[15:0] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+15:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+15:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
VPMULLW __m512i _mm512_mullo_epi16(__m512i a, __m512i b); VPMULLW __m512i _mm512_mask_mullo_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b); VPMULLW __m512i _mm512_maskz_mullo_epi16( __mmask32 k, __m512i a, __m512i b); VPMULLW __m256i _mm256_mask_mullo_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b); VPMULLW __m256i _mm256_maskz_mullo_epi16( __mmask16 k, __m256i a, __m256i b); VPMULLW __m128i _mm_mask_mullo_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b); VPMULLW __m128i _mm_maskz_mullo_epi16( __mmask8 k, __m128i a, __m128i b); PMULLW __m64 _mm_mullo_pi16(__m64 m1, __m64 m2) (V)PMULLW __m128i _mm_mullo_epi16 ( __m128i a, __m128i b) VPMULLW __m256i _mm256_mullo_epi16 ( __m256i a, __m256i b);
None.
None.
Non-EVEX-encoded instruction, see Table 2-21, "Type 4 Class Exception Conditions." EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-49, "Type E4 Class Exception Conditions."