Opcode/ Instruction |
Op/En |
64/32 bit Mode Support |
CPUID Feature Flag |
Description |
66 0F 38 40 /r PMULLD xmm1, xmm2/m128 |
A |
V/V |
SSE4_1 |
Multiply the packed dword signed integers in xmm1 and xmm2/m128 and store the low 32 bits of each product in xmm1. |
VEX.128.66.0F38.WIG 40 /r VPMULLD xmm1, xmm2, xmm3/m128 |
B |
V/V |
AVX |
Multiply the packed dword signed integers in xmm2 and xmm3/m128 and store the low 32 bits of each product in xmm1. |
VEX.256.66.0F38.WIG 40 /r VPMULLD ymm1, ymm2, ymm3/m256 |
B |
V/V |
AVX2 |
Multiply the packed dword signed integers in ymm2 and ymm3/m256 and store the low 32 bits of each product in ymm1. |
EVEX.128.66.0F38.W0 40 /r VPMULLD xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst |
C |
V/V |
AVX512VL AVX512F |
Multiply the packed dword signed integers in xmm2 and xmm3/m128/m32bcst and store the low 32 bits of each product in xmm1 under writemask k1. |
EVEX.256.66.0F38.W0 40 /r VPMULLD ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst |
C |
V/V |
AVX512VL AVX512F |
Multiply the packed dword signed integers in ymm2 and ymm3/m256/m32bcst and store the low 32 bits of each product in ymm1 under writemask k1. |
EVEX.512.66.0F38.W0 40 /r VPMULLD zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst |
C |
V/V |
AVX512F |
Multiply the packed dword signed integers in zmm2 and zmm3/m512/m32bcst and store the low 32 bits of each product in zmm1 under writemask k1. |
EVEX.128.66.0F38.W1 40 /r VPMULLQ xmm1 {k1}{z}, xmm2, xmm3/m128/m64bcst |
C |
V/V |
AVX512VL AVX512DQ |
Multiply the packed qword signed integers in xmm2 and xmm3/m128/m64bcst and store the low 64 bits of each product in xmm1 under writemask k1. |
EVEX.256.66.0F38.W1 40 /r VPMULLQ ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcst |
C |
V/V |
AVX512VLA VX512DQ |
Multiply the packed qword signed integers in ymm2 and ymm3/m256/m64bcst and store the low 64 bits of each product in ymm1 under writemask k1. |
EVEX.512.66.0F38.W1 40 /r VPMULLQ zmm1 {k1}{z}, zmm2, zmm3/m512/m64bcst |
C |
V/V |
AVX512DQ |
Multiply the packed qword signed integers in zmm2 and zmm3/m512/m64bcst and store the low 64 bits of each product in zmm1 under writemask k1. |
Op/En |
Tuple Type |
Operand 1 |
Operand 2 |
Operand 3 |
Operand 4 |
A |
N/A |
ModRM:reg (r, w) |
ModRM:r/m (r) |
N/A |
N/A |
B |
N/A |
ModRM:reg (w) |
VEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
C |
Full |
ModRM:reg (w) |
EVEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
Performs a SIMD signed multiply of the packed signed dword/qword integers from each element of the first source operand with the corresponding element in the second source operand. The low 32/64 bits of each 64/128-bit intermediate results are stored to the destination operand.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding ZMM destina- tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding ZMM register are zeroed.
VEX.256 encoded version: The first source operand is a YMM register; The second source operand is a YMM register or 256-bit memory location. Bits (MAXVL-1:256) of the corresponding destination ZMM register are zeroed.
EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The destination operand is conditionally updated based on writemask k1.
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN IF (EVEX.b == 1) AND (SRC2 *is memory*) THEN Temp[127:0] := SRC1[i+63:i] * SRC2[63:0] ELSE Temp[127:0] := SRC1[i+63:i] * SRC2[i+63:i] FI; DEST[i+63:i] := Temp[63:0] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE ; zeroing-masking DEST[i+63:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) AND (SRC2 *is memory*) THEN Temp[63:0] := SRC1[i+31:i] * SRC2[31:0] ELSE Temp[63:0] := SRC1[i+31:i] * SRC2[i+31:i] FI; DEST[i+31:i] := Temp[31:0] ELSE IF *merging-masking* ; merging-masking *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
Temp0[63:0] := SRC1[31:0] * SRC2[31:0] Temp1[63:0] := SRC1[63:32] * SRC2[63:32] Temp2[63:0] := SRC1[95:64] * SRC2[95:64] Temp3[63:0] := SRC1[127:96] * SRC2[127:96] Temp4[63:0] := SRC1[159:128] * SRC2[159:128] Temp5[63:0] := SRC1[191:160] * SRC2[191:160] Temp6[63:0] := SRC1[223:192] * SRC2[223:192] Temp7[63:0] := SRC1[255:224] * SRC2[255:224] DEST[31:0] := Temp0[31:0] DEST[63:32] := Temp1[31:0] DEST[95:64] := Temp2[31:0] DEST[127:96] := Temp3[31:0] DEST[159:128] := Temp4[31:0] DEST[191:160] := Temp5[31:0] DEST[223:192] := Temp6[31:0] DEST[255:224] := Temp7[31:0] DEST[MAXVL-1:256] := 0
Temp0[63:0] := SRC1[31:0] * SRC2[31:0] Temp1[63:0] := SRC1[63:32] * SRC2[63:32] Temp2[63:0] := SRC1[95:64] * SRC2[95:64] Temp3[63:0] := SRC1[127:96] * SRC2[127:96] DEST[31:0] := Temp0[31:0] DEST[63:32] := Temp1[31:0] DEST[95:64] := Temp2[31:0] DEST[127:96] := Temp3[31:0] DEST[MAXVL-1:128] := 0
Temp0[63:0] := DEST[31:0] * SRC[31:0] Temp1[63:0] := DEST[63:32] * SRC[63:32] Temp2[63:0] := DEST[95:64] * SRC[95:64] Temp3[63:0] := DEST[127:96] * SRC[127:96] DEST[31:0] := Temp0[31:0] DEST[63:32] := Temp1[31:0] DEST[95:64] := Temp2[31:0] DEST[127:96] := Temp3[31:0] DEST[MAXVL-1:128] (Unmodified)
VPMULLD __m512i _mm512_mullo_epi32(__m512i a, __m512i b); VPMULLD __m512i _mm512_mask_mullo_epi32(__m512i s, __mmask16 k, __m512i a, __m512i b); VPMULLD __m512i _mm512_maskz_mullo_epi32( __mmask16 k, __m512i a, __m512i b); VPMULLD __m256i _mm256_mask_mullo_epi32(__m256i s, __mmask8 k, __m256i a, __m256i b); VPMULLD __m256i _mm256_maskz_mullo_epi32( __mmask8 k, __m256i a, __m256i b); VPMULLD __m128i _mm_mask_mullo_epi32(__m128i s, __mmask8 k, __m128i a, __m128i b); VPMULLD __m128i _mm_maskz_mullo_epi32( __mmask8 k, __m128i a, __m128i b); VPMULLD __m256i _mm256_mullo_epi32(__m256i a, __m256i b); PMULLD __m128i _mm_mullo_epi32(__m128i a, __m128i b); VPMULLQ __m512i _mm512_mullo_epi64(__m512i a, __m512i b); VPMULLQ __m512i _mm512_mask_mullo_epi64(__m512i s, __mmask8 k, __m512i a, __m512i b); VPMULLQ __m512i _mm512_maskz_mullo_epi64( __mmask8 k, __m512i a, __m512i b); VPMULLQ __m256i _mm256_mullo_epi64(__m256i a, __m256i b); VPMULLQ __m256i _mm256_mask_mullo_epi64(__m256i s, __mmask8 k, __m256i a, __m256i b); VPMULLQ __m256i _mm256_maskz_mullo_epi64( __mmask8 k, __m256i a, __m256i b); VPMULLQ __m128i _mm_mullo_epi64(__m128i a, __m128i b); VPMULLQ __m128i _mm_mask_mullo_epi64(__m128i s, __mmask8 k, __m128i a, __m128i b); VPMULLQ __m128i _mm_maskz_mullo_epi64( __mmask8 k, __m128i a, __m128i b);
None.
Non-EVEX-encoded instruction, see Table 2-21, "Type 4 Class Exception Conditions." EVEX-encoded instruction, see Table 2-49, "Type E4 Class Exception Conditions."