Opcode/ Instruction |
Op/ En |
64/32 bit Mode Support |
CPUID Feature Flag |
Description |
NP 0F 74 /r1 PCMPEQB mm, mm/m64 |
A |
V/V |
MMX |
Compare packed bytes in mm/m64 and mm for equality. |
66 0F 74 /r PCMPEQB xmm1, xmm2/m128 |
A |
V/V |
SSE2 |
Compare packed bytes in xmm2/m128 and xmm1 for equality. |
NP 0F 75 /r1 PCMPEQW mm, mm/m64 |
A |
V/V |
MMX |
Compare packed words in mm/m64 and mm for equality. |
66 0F 75 /r PCMPEQW xmm1, xmm2/m128 |
A |
V/V |
SSE2 |
Compare packed words in xmm2/m128 and xmm1 for equality. |
NP 0F 76 /r1 PCMPEQD mm, mm/m64 |
A |
V/V |
MMX |
Compare packed doublewords in mm/m64 and mm for equality. |
66 0F 76 /r PCMPEQD xmm1, xmm2/m128 |
A |
V/V |
SSE2 |
Compare packed doublewords in xmm2/m128 and xmm1 for equality. |
VEX.128.66.0F.WIG 74 /r VPCMPEQB xmm1, xmm2, xmm3/m128 |
B |
V/V |
AVX |
Compare packed bytes in xmm3/m128 and xmm2 for equality. |
VEX.128.66.0F.WIG 75 /r VPCMPEQW xmm1, xmm2, xmm3/m128 |
B |
V/V |
AVX |
Compare packed words in xmm3/m128 and xmm2 for equality. |
VEX.128.66.0F.WIG 76 /r VPCMPEQD xmm1, xmm2, xmm3/m128 |
B |
V/V |
AVX |
Compare packed doublewords in xmm3/m128 and xmm2 for equality. |
VEX.256.66.0F.WIG 74 /r VPCMPEQB ymm1, ymm2, ymm3 /m256 |
B |
V/V |
AVX2 |
Compare packed bytes in ymm3/m256 and ymm2 for equality. |
VEX.256.66.0F.WIG 75 /r VPCMPEQW ymm1, ymm2, ymm3 /m256 |
B |
V/V |
AVX2 |
Compare packed words in ymm3/m256 and ymm2 for equality. |
VEX.256.66.0F.WIG 76 /r VPCMPEQD ymm1, ymm2, ymm3 /m256 |
B |
V/V |
AVX2 |
Compare packed doublewords in ymm3/m256 and ymm2 for equality. |
EVEX.128.66.0F.W0 76 /r VPCMPEQD k1 {k2}, xmm2, xmm3/m128/m32bcst |
C |
V/V |
AVX512VL AVX512F |
Compare Equal between int32 vector xmm2 and int32 vector xmm3/m128/m32bcst, and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask. |
EVEX.256.66.0F.W0 76 /r VPCMPEQD k1 {k2}, ymm2, ymm3/m256/m32bcst |
C |
V/V |
AVX512VL AVX512F |
Compare Equal between int32 vector ymm2 and int32 vector ymm3/m256/m32bcst, and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask. |
EVEX.512.66.0F.W0 76 /r VPCMPEQD k1 {k2}, zmm2, zmm3/m512/m32bcst |
C |
V/V |
AVX512F |
Compare Equal between int32 vectors in zmm2 and zmm3/m512/m32bcst, and set destination k1 according to the comparison results under writemask k2. |
EVEX.128.66.0F.WIG 74 /r VPCMPEQB k1 {k2}, xmm2, xmm3 /m128 |
D |
V/V |
AVX512VL AVX512BW |
Compare packed bytes in xmm3/m128 and xmm2 for equality and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask. |
EVEX.256.66.0F.WIG 74 /r VPCMPEQB k1 {k2}, ymm2, ymm3 /m256 |
D |
V/V |
AVX512VL AVX512BW |
Compare packed bytes in ymm3/m256 and ymm2 for equality and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask. |
EVEX.512.66.0F.WIG 74 /r VPCMPEQB k1 {k2}, zmm2, zmm3 /m512 |
D |
V/V |
AVX512BW Compare packed bytes in zmm3/m512 and zmm2 for equality and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask. | |
EVEX.128.66.0F.WIG 75 /r VPCMPEQW k1 {k2}, xmm2, xmm3 /m128 |
D |
V/V |
AVX512VL AVX512BW |
Compare packed words in xmm3/m128 and xmm2 for equality and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask. |
EVEX.256.66.0F.WIG 75 /r VPCMPEQW k1 {k2}, ymm2, ymm3 /m256 |
D |
V/V |
AVX512VL AVX512BW |
Compare packed words in ymm3/m256 and ymm2 for equality and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask. |
EVEX.512.66.0F.WIG 75 /r VPCMPEQW k1 {k2}, zmm2, zmm3 /m512 |
D |
V/V |
AVX512BW Compare packed words in zmm3/m512 and zmm2 for equality and set vector mask k1 to reflect the zero/nonzero status of each element of the result, under writemask. |
1. See note in Section 2.5, "Intel® AVX and Intel® SSE Instruction Exception Classification," in the Intel® 64 and IA-32 Architectures Soft-
ware Developer's Manual, Volume 2A, and Section 23.25.3, "Exception Conditions of Legacy SIMD Instructions Operating on MMX
Registers," in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3B.
Op/En |
Tuple Type |
Operand 1 |
Operand 2 |
Operand 3 |
Operand 4 |
A |
N/A |
ModRM:reg (r, w) |
ModRM:r/m (r) |
N/A |
N/A |
B |
N/A |
ModRM:reg (w) |
VEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
C |
Full |
ModRM:reg (w) |
EVEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
D |
Full Mem |
ModRM:reg (w) |
EVEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
Performs a SIMD compare for equality of the packed bytes, words, or doublewords in the destination operand (first operand) and the source operand (second operand). If a pair of data elements is equal, the corresponding data element in the destination operand is set to all 1s; otherwise, it is set to all 0s.
The (V)PCMPEQB instruction compares the corresponding bytes in the destination and source operands; the (V)PCMPEQW instruction compares the corresponding words in the destination and source operands; and the (V)PCMPEQD instruction compares the corresponding doublewords in the destination and source operands.
In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).
Legacy SSE instructions: The source operand can be an MMX technology register or a 64-bit memory location. The destination operand can be an MMX technology register.
128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The first source and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The first source and destination operands are XMM registers. Bits (MAXVL-1:128) of the corresponding YMM register are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register or a 256-bit memory location. The destination operand is a YMM register.
EVEX encoded VPCMPEQD: The first source operand (second operand) is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand (first operand) is a mask register updated according to the writemask k2.
EVEX encoded VPCMPEQB/W: The first source operand (second operand) is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand (first operand) is a mask register updated according to the writemask k2.
IF DEST[7:0] = SRC[7:0] THEN DEST[7:0) := FFH; ELSE DEST[7:0] := 0; FI; (* Continue comparison of 2nd through 7th bytes in DEST and SRC *) IF DEST[63:56] = SRC[63:56] THEN DEST[63:56] := FFH; ELSE DEST[63:56] := 0; FI;
IF SRC1[7:0] = SRC2[7:0] THEN DEST[7:0] := FFH; ELSE DEST[7:0] := 0; FI; (* Continue comparison of 2nd through 15th bytes in SRC1 and SRC2 *) IF SRC1[127:120] = SRC2[127:120] THEN DEST[127:120] := FFH; ELSE DEST[127:120] := 0; FI;
IF SRC1[15:0] = SRC2[15:0] THEN DEST[15:0] := FFFFH; ELSE DEST[15:0] := 0; FI; (* Continue comparison of 2nd through 7th 16-bit words in SRC1 and SRC2 *) IF SRC1[127:112] = SRC2[127:112] THEN DEST[127:112] := FFFFH; ELSE DEST[127:112] := 0; FI;
IF SRC1[31:0] = SRC2[31:0] THEN DEST[31:0] := FFFFFFFFH; ELSE DEST[31:0] := 0; FI; (* Continue comparison of 2nd through 3rd 32-bit dwords in SRC1 and SRC2 *) IF SRC1[127:96] = SRC2[127:96] THEN DEST[127:96] := FFFFFFFFH; ELSE DEST[127:96] := 0; FI;
DEST[127:0] := COMPARE_BYTES_EQUAL(DEST[127:0],SRC[127:0]) DEST[MAXVL-1:128] (Unmodified)
DEST[127:0] := COMPARE_BYTES_EQUAL(SRC1[127:0],SRC2[127:0]) DEST[MAXVL-1:128] := 0
DEST[127:0] := COMPARE_BYTES_EQUAL(SRC1[127:0],SRC2[127:0]) DEST[255:128] := COMPARE_BYTES_EQUAL(SRC1[255:128],SRC2[255:128]) DEST[MAXVL-1:256] := 0
(KL, VL) = (16, 128), (32, 256), (64, 512) FOR j := 0 TO KL-1 i := j * 8 IF k2[j] OR *no writemask* THEN /* signed comparison */ CMP := SRC1[i+7:i] == SRC2[i+7:i]; IF CMP = TRUE THEN DEST[j] := 1; ELSE DEST[j] := 0; FI; ELSE DEST[j] := 0 ; zeroing-masking onlyFI; FI; ENDFOR DEST[MAX_KL-1:KL] := 0
IF DEST[15:0] = SRC[15:0] THEN DEST[15:0] := FFFFH; ELSE DEST[15:0] := 0; FI; (* Continue comparison of 2nd and 3rd words in DEST and SRC *) IF DEST[63:48] = SRC[63:48] THEN DEST[63:48] := FFFFH; ELSE DEST[63:48] := 0; FI;
DEST[127:0] := COMPARE_WORDS_EQUAL(DEST[127:0],SRC[127:0]) DEST[MAXVL-1:128] (Unmodified)
DEST[127:0] := COMPARE_WORDS_EQUAL(SRC1[127:0],SRC2[127:0]) DEST[MAXVL-1:128] := 0
DEST[127:0] := COMPARE_WORDS_EQUAL(SRC1[127:0],SRC2[127:0]) DEST[255:128] := COMPARE_WORDS_EQUAL(SRC1[255:128],SRC2[255:128]) DEST[MAXVL-1:256] := 0
(KL, VL) = (8, 128), (16, 256), (32, 512) FOR j := 0 TO KL-1 i := j * 16 IF k2[j] OR *no writemask* THEN /* signed comparison */ CMP := SRC1[i+15:i] == SRC2[i+15:i]; IF CMP = TRUE THEN DEST[j] := 1; ELSE DEST[j] := 0; FI; ELSE DEST[j] := 0 ; zeroing-masking onlyFI; FI; ENDFOR DEST[MAX_KL-1:KL] := 0
IF DEST[31:0] = SRC[31:0] THEN DEST[31:0] := FFFFFFFFH; ELSE DEST[31:0] := 0; FI; IF DEST[63:32] = SRC[63:32] THEN DEST[63:32] := FFFFFFFFH; ELSE DEST[63:32] := 0; FI;
DEST[127:0] := COMPARE_DWORDS_EQUAL(DEST[127:0],SRC[127:0]) DEST[MAXVL-1:128] (Unmodified)
DEST[127:0] := COMPARE_DWORDS_EQUAL(SRC1[127:0],SRC2[127:0]) DEST[MAXVL-1:128] := 0
DEST[127:0] := COMPARE_DWORDS_EQUAL(SRC1[127:0],SRC2[127:0]) DEST[255:128] := COMPARE_DWORDS_EQUAL(SRC1[255:128],SRC2[255:128]) DEST[MAXVL-1:256] := 0
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF k2[j] OR *no writemask* THEN /* signed comparison */ IF (EVEX.b = 1) AND (SRC2 *is memory*) THEN CMP := SRC1[i+31:i] = SRC2[31:0]; ELSE CMP := SRC1[i+31:i] = SRC2[i+31:i]; FI; IF CMP = TRUE THEN DEST[j] := 1; ELSE DEST[j] := 0; FI; ELSE DEST[j] := 0 ; zeroing-masking only FI; ENDFOR DEST[MAX_KL-1:KL] := 0
VPCMPEQB __mmask64 _mm512_cmpeq_epi8_mask(__m512i a, __m512i b); VPCMPEQB __mmask64 _mm512_mask_cmpeq_epi8_mask(__mmask64 k, __m512i a, __m512i b); VPCMPEQB __mmask32 _mm256_cmpeq_epi8_mask(__m256i a, __m256i b); VPCMPEQB __mmask32 _mm256_mask_cmpeq_epi8_mask(__mmask32 k, __m256i a, __m256i b); VPCMPEQB __mmask16 _mm_cmpeq_epi8_mask(__m128i a, __m128i b); VPCMPEQB __mmask16 _mm_mask_cmpeq_epi8_mask(__mmask16 k, __m128i a, __m128i b); VPCMPEQW __mmask32 _mm512_cmpeq_epi16_mask(__m512i a, __m512i b); VPCMPEQW __mmask32 _mm512_mask_cmpeq_epi16_mask(__mmask32 k, __m512i a, __m512i b); VPCMPEQW __mmask16 _mm256_cmpeq_epi16_mask(__m256i a, __m256i b); VPCMPEQW __mmask16 _mm256_mask_cmpeq_epi16_mask(__mmask16 k, __m256i a, __m256i b); VPCMPEQW __mmask8 _mm_cmpeq_epi16_mask(__m128i a, __m128i b); VPCMPEQW __mmask8 _mm_mask_cmpeq_epi16_mask(__mmask8 k, __m128i a, __m128i b); VPCMPEQD __mmask16 _mm512_cmpeq_epi32_mask( __m512i a, __m512i b); VPCMPEQD __mmask16 _mm512_mask_cmpeq_epi32_mask(__mmask16 k, __m512i a, __m512i b); VPCMPEQD __mmask8 _mm256_cmpeq_epi32_mask(__m256i a, __m256i b); VPCMPEQD __mmask8 _mm256_mask_cmpeq_epi32_mask(__mmask8 k, __m256i a, __m256i b); VPCMPEQD __mmask8 _mm_cmpeq_epi32_mask(__m128i a, __m128i b); VPCMPEQD __mmask8 _mm_mask_cmpeq_epi32_mask(__mmask8 k, __m128i a, __m128i b); PCMPEQB __m64 _mm_cmpeq_pi8 (__m64 m1, __m64 m2) PCMPEQW __m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2) PCMPEQD __m64 _mm_cmpeq_pi32 (__m64 m1, __m64 m2) (V)PCMPEQB __m128i _mm_cmpeq_epi8 ( __m128i a, __m128i b) (V)PCMPEQW __m128i _mm_cmpeq_epi16 ( __m128i a, __m128i b) (V)PCMPEQD __m128i _mm_cmpeq_epi32 ( __m128i a, __m128i b) VPCMPEQB __m256i _mm256_cmpeq_epi8 ( __m256i a, __m256i b) VPCMPEQW __m256i _mm256_cmpeq_epi16 ( __m256i a, __m256i b) VPCMPEQD __m256i _mm256_cmpeq_epi32 ( __m256i a, __m256i b)
None.
None.
Non-EVEX-encoded instruction, see Table 2-21, "Type 4 Class Exception Conditions." EVEX-encoded VPCMPEQD, see Table 2-49, "Type E4 Class Exception Conditions." EVEX-encoded VPCMPEQB/W, see Exceptions Type E4.nb in Table 2-49, "Type E4 Class Exception Conditions."