MULSD - Multiply Scalar Double Precision Floating-Point Value

Opcode/ Instruction

Op / En

64/32 bit Mode Support

CPUID Feature Flag

Description

F2 0F 59 /r MULSD xmm1,xmm2/m64

A

V/V

SSE2

Multiply the low double precision floating-point value in xmm2/m64 by low double precision floating-point value in xmm1.

VEX.LIG.F2.0F.WIG 59 /r VMULSD xmm1,xmm2, xmm3/m64

B

V/V

AVX

Multiply the low double precision floating-point value in xmm3/m64 by low double precision floating-point value in xmm2.

EVEX.LLIG.F2.0F.W1 59 /r VMULSD xmm1 {k1}{z}, xmm2, xmm3/m64 {er}

C

V/V

AVX512F

Multiply the low double precision floating-point value in xmm3/m64 by low double precision floating-point value in xmm2.

Instruction Operand Encoding

Op/En

Tuple Type

Operand 1

Operand 2

Operand 3

Operand 4

A

N/A

ModRM:reg (r, w)

ModRM:r/m (r)

N/A

N/A

B

N/A

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

N/A

C

Tuple1 Scalar

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

N/A

Description

Multiplies the low double precision floating-point value in the second source operand by the low double precision floating-point value in the first source operand, and stores the double precision floating-point result in the destina- tion operand. The second source operand can be an XMM register or a 64-bit memory location. The first source operand and the destination operands are XMM registers.

128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAXVL- 1:64) of the corresponding destination register remain unchanged.

VEX.128 and EVEX encoded version: The quadword at bits 127:64 of the destination operand is copied from the same bits of the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.

EVEX encoded version: The low quadword element of the destination operand is updated according to the write- mask.

Software should ensure VMULSD is encoded with VEX.L=0. Encoding VMULSD with VEX.L=1 may encounter unpre- dictable behavior across different processor generations.

Operation

VMULSD (EVEX Encoded Version)

IF (EVEX.b = 1) AND SRC2 *is a register*
   THEN
       SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);
   ELSE 
       SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);
FI;
IF k1[0] or *no writemask*
   THEN    DEST[63:0] := SRC1[63:0] * SRC2[63:0]
   ELSE 
       IF *merging-masking*                ; merging-masking
            THEN *DEST[63:0] remains unchanged*
            ELSE                            ; zeroing-masking
                THEN DEST[63:0] := 0
            FI
   FI;
ENDFOR
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

VMULSD (VEX.128 Encoded Version)

DEST[63:0] := SRC1[63:0] * SRC2[63:0]
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

MULSD (128-bit Legacy SSE Version)

DEST[63:0] := DEST[63:0] * SRC[63:0]
DEST[MAXVL-1:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VMULSD __m128d _mm_mask_mul_sd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VMULSD __m128d _mm_maskz_mul_sd( __mmask8 k, __m128d a, __m128d b);
VMULSD __m128d _mm_mul_round_sd( __m128d a, __m128d b, int);
VMULSD __m128d _mm_mask_mul_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VMULSD __m128d _mm_maskz_mul_round_sd( __mmask8 k, __m128d a, __m128d b, int);
MULSD __m128d _mm_mul_sd (__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

Non-EVEX-encoded instruction, see Table 2-20, "Type 3 Class Exception Conditions." EVEX-encoded instruction, see Table 2-47, "Type E3 Class Exception Conditions."