DIVPS - Divide Packed Single Precision Floating-Point Values

Opcode/ Instruction

Op / En

64/32 bit Mode Support

CPUID Feature Flag

Description

NP 0F 5E /r DIVPS xmm1, xmm2/m128

A

V/V

SSE

Divide packed single precision floating-point values in xmm1 by packed single precision floating-point values in xmm2/mem.

VEX.128.0F.WIG 5E /r VDIVPS xmm1, xmm2, xmm3/m128

B

V/V

AVX

Divide packed single precision floating-point values in xmm2 by packed single precision floating-point values in xmm3/mem.

VEX.256.0F.WIG 5E /r VDIVPS ymm1, ymm2, ymm3/m256

B

V/V

AVX

Divide packed single precision floating-point values in ymm2 by packed single precision floating-point values in ymm3/mem.

EVEX.128.0F.W0 5E /r VDIVPS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst

C

V/V

AVX512VL AVX512F

Divide packed single precision floating-point values in xmm2 by packed single precision floating-point values in xmm3/m128/m32bcst and write results to xmm1 subject to writemask k1.

EVEX.256.0F.W0 5E /r VDIVPS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst

C

V/V

AVX512VL AVX512F

Divide packed single precision floating-point values in ymm2 by packed single precision floating-point values in ymm3/m256/m32bcst and write results to ymm1 subject to writemask k1.

EVEX.512.0F.W0 5E /r VDIVPS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst{er}

C

V/V

AVX512F

Divide packed single precision floating-point values in zmm2 by packed single precision floating-point values in zmm3/m512/m32bcst and write results to zmm1 subject to writemask k1.

Instruction Operand Encoding

Op/En

Tuple Type

Operand 1

Operand 2

Operand 3

Operand 4

A

N/A

ModRM:reg (r, w)

ModRM:r/m (r)

N/A

N/A

B

N/A

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

N/A

C

Full

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

N/A

Description

Performs a SIMD divide of the four, eight or sixteen packed single precision floating-point values in the first source operand (the second operand) by the four, eight or sixteen packed single precision floating-point values in the second source operand (the third operand). Results are written to the destination operand (the first operand).

EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register.

VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.

128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti- nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.

Operation

VDIVPS (EVEX Encoded Versions)

(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1) AND SRC2 *is a register*
   THEN
       SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);
   ELSE 
       SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);
FI;
FOR j := 0 TO KL-1
   i := j * 32
   IF k1[j] OR *no writemask*
       THEN 
            IF (EVEX.b = 1) AND (SRC2 *is memory*)
                THEN
                     DEST[i+31:i] := SRC1[i+31:i] / SRC2[31:0]
                ELSE 
                     DEST[i+31:i] := SRC1[i+31:i] / SRC2[i+31:i]
            FI;
       ELSE 
            IF *merging-masking*                ; merging-masking
                THEN *DEST[i+31:i] remains unchanged*
                ELSE                            ; zeroing-masking
                     DEST[i+31:i] := 0
            FI
   FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VDIVPS (VEX.256 Encoded Version)

DEST[31:0] := SRC1[31:0] / SRC2[31:0]
DEST[63:32] := SRC1[63:32] / SRC2[63:32]
DEST[95:64] := SRC1[95:64] / SRC2[95:64]
DEST[127:96] := SRC1[127:96] / SRC2[127:96]
DEST[159:128] := SRC1[159:128] / SRC2[159:128]
DEST[191:160] := SRC1[191:160] / SRC2[191:160]
DEST[223:192] := SRC1[223:192] / SRC2[223:192]
DEST[255:224] := SRC1[255:224] / SRC2[255:224].
DEST[MAXVL-1:256] := 0;

VDIVPS (VEX.128 Encoded Version)

DEST[31:0] := SRC1[31:0] / SRC2[31:0]
DEST[63:32] := SRC1[63:32] / SRC2[63:32]
DEST[95:64] := SRC1[95:64] / SRC2[95:64]
DEST[127:96] := SRC1[127:96] / SRC2[127:96]
DEST[MAXVL-1:128] := 0

DIVPS (128-bit Legacy SSE Version)

DEST[31:0] := SRC1[31:0] / SRC2[31:0]
DEST[63:32] := SRC1[63:32] / SRC2[63:32]
DEST[95:64] := SRC1[95:64] / SRC2[95:64]
DEST[127:96] := SRC1[127:96] / SRC2[127:96]
DEST[MAXVL-1:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VDIVPS __m512 _mm512_div_ps( __m512 a, __m512 b);
VDIVPS __m512 _mm512_mask_div_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
VDIVPS __m512 _mm512_maskz_div_ps(__mmask16 k, __m512 a, __m512 b);
VDIVPD __m256d _mm256_mask_div_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
VDIVPD __m256d _mm256_maskz_div_pd( __mmask8 k, __m256d a, __m256d b);
VDIVPD __m128d _mm_mask_div_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VDIVPD __m128d _mm_maskz_div_pd( __mmask8 k, __m128d a, __m128d b);
VDIVPS __m512 _mm512_div_round_ps( __m512 a, __m512 b, int);
VDIVPS __m512 _mm512_mask_div_round_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int);
VDIVPS __m512 _mm512_maskz_div_round_ps(__mmask16 k, __m512 a, __m512 b, int);
VDIVPS __m256 _mm256_div_ps (__m256 a, __m256 b);
DIVPS __m128 _mm_div_ps (__m128 a, __m128 b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Other Exceptions

VEX-encoded instructions, see Table 2-19, "Type 2 Class Exception Conditions."

EVEX-encoded instructions, see Table 2-46, "Type E2 Class Exception Conditions."