Opcode/ Instruction |
Op / En |
64/32 bit Mode Support |
CPUID Feature Flag |
Description |
66 0F 5E /r DIVPD xmm1, xmm2/m128 |
A |
V/V |
SSE2 |
Divide packed double precision floating-point values in xmm1 by packed double precision floating-point values in xmm2/mem. |
VEX.128.66.0F.WIG 5E /r VDIVPD xmm1, xmm2, xmm3/m128 |
B |
V/V |
AVX |
Divide packed double precision floating-point values in xmm2 by packed double precision floating-point values in xmm3/mem. |
VEX.256.66.0F.WIG 5E /r VDIVPD ymm1, ymm2, ymm3/m256 |
B |
V/V |
AVX |
Divide packed double precision floating-point values in ymm2 by packed double precision floating-point values in ymm3/mem. |
EVEX.128.66.0F.W1 5E /r VDIVPD xmm1 {k1}{z}, xmm2, xmm3/m128/m64bcst |
C |
V/V |
AVX512VL AVX512F |
Divide packed double precision floating-point values in xmm2 by packed double precision floating-point values in xmm3/m128/m64bcst and write results to xmm1 subject to writemask k1. |
EVEX.256.66.0F.W1 5E /r VDIVPD ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcst |
C |
V/V |
AVX512VL AVX512F |
Divide packed double precision floating-point values in ymm2 by packed double precision floating-point values in ymm3/m256/m64bcst and write results to ymm1 subject to writemask k1. |
EVEX.512.66.0F.W1 5E /r VDIVPD zmm1 {k1}{z}, zmm2, zmm3/m512/m64bcst{er} |
C |
V/V |
AVX512F |
Divide packed double precision floating-point values in zmm2 by packed double precision floating-point values in zmm3/m512/m64bcst and write results to zmm1 subject to writemask k1. |
Op/En |
Tuple Type |
Operand 1 |
Operand 2 |
Operand 3 |
Operand 4 |
A |
N/A |
ModRM:reg (r, w) |
ModRM:r/m (r) |
N/A |
N/A |
B |
N/A |
ModRM:reg (w) |
VEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
C |
Full |
ModRM:reg (w) |
EVEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
Performs a SIMD divide of the double precision floating-point values in the first source operand by the floating- point values in the second source operand (the third operand). Results are written to the destination operand (the first operand).
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.
VEX.256 encoded version: The first source operand (the second operand) is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding destination are zeroed.
VEX.128 encoded version: The first source operand (the second operand) is a XMM register. The second source operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding destination are zeroed.
128-bit Legacy SSE version: The second source operand (the second operand) can be an XMM register or an 128- bit memory location. The destination is the same as the first source operand. The upper bits (MAXVL-1:128) of the corresponding destination are unmodified.
(KL, VL) = (2, 128), (4, 256), (8, 512) IF (VL = 512) AND (EVEX.b = 1) AND SRC2 *is a register* THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ; refer to Table 15-4 in the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 1 ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) AND (SRC2 *is memory*) THEN DEST[i+63:i] := SRC1[i+63:i] / SRC2[63:0] ELSE DEST[i+63:i] := SRC1[i+63:i] / SRC2[i+63:i] FI; ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE ; zeroing-masking DEST[i+63:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
DEST[63:0] := SRC1[63:0] / SRC2[63:0] DEST[127:64] := SRC1[127:64] / SRC2[127:64] DEST[191:128] := SRC1[191:128] / SRC2[191:128] DEST[255:192] := SRC1[255:192] / SRC2[255:192] DEST[MAXVL-1:256] := 0;
DEST[63:0] := SRC1[63:0] / SRC2[63:0] DEST[127:64] := SRC1[127:64] / SRC2[127:64] DEST[MAXVL-1:128] := 0;
DEST[63:0] := SRC1[63:0] / SRC2[63:0] DEST[127:64] := SRC1[127:64] / SRC2[127:64] DEST[MAXVL-1:128] (Unmodified)
VDIVPD __m512d _mm512_div_pd( __m512d a, __m512d b); VDIVPD __m512d _mm512_mask_div_pd(__m512d s, __mmask8 k, __m512d a, __m512d b); VDIVPD __m512d _mm512_maskz_div_pd( __mmask8 k, __m512d a, __m512d b); VDIVPD __m256d _mm256_mask_div_pd(__m256d s, __mmask8 k, __m256d a, __m256d b); VDIVPD __m256d _mm256_maskz_div_pd( __mmask8 k, __m256d a, __m256d b); VDIVPD __m128d _mm_mask_div_pd(__m128d s, __mmask8 k, __m128d a, __m128d b); VDIVPD __m128d _mm_maskz_div_pd( __mmask8 k, __m128d a, __m128d b); VDIVPD __m512d _mm512_div_round_pd( __m512d a, __m512d b, int); VDIVPD __m512d _mm512_mask_div_round_pd(__m512d s, __mmask8 k, __m512d a, __m512d b, int); VDIVPD __m512d _mm512_maskz_div_round_pd( __mmask8 k, __m512d a, __m512d b, int); VDIVPD __m256d _mm256_div_pd (__m256d a, __m256d b); DIVPD __m128d _mm_div_pd (__m128d a, __m128d b);
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.
VEX-encoded instructions, see Table 2-19, "Type 2 Class Exception Conditions."
EVEX-encoded instructions, see Table 2-46, "Type E2 Class Exception Conditions."