Opcode/ Instruction |
Op / En |
64/32 bit Mode Support |
CPUID Feature Flag |
Description |
66 0F E6 /r CVTTPD2DQ xmm1, xmm2/m128 |
A |
V/V |
SSE2 |
Convert two packed double precision floating-point values in xmm2/mem to two signed doubleword integers in xmm1 using truncation. |
VEX.128.66.0F.WIG E6 /r VCVTTPD2DQ xmm1, xmm2/m128 |
A |
V/V |
AVX |
Convert two packed double precision floating-point values in xmm2/mem to two signed doubleword integers in xmm1 using truncation. |
VEX.256.66.0F.WIG E6 /r VCVTTPD2DQ xmm1, ymm2/m256 |
A |
V/V |
AVX |
Convert four packed double precision floating-point values in ymm2/mem to four signed doubleword integers in xmm1 using truncation. |
EVEX.128.66.0F.W1 E6 /r VCVTTPD2DQ xmm1 {k1}{z}, xmm2/m128/m64bcst |
B |
V/V |
AVX512VL AVX512F |
Convert two packed double precision floating-point values in xmm2/m128/m64bcst to two signed doubleword integers in xmm1 using truncation subject to writemask k1. |
EVEX.256.66.0F.W1 E6 /r VCVTTPD2DQ xmm1 {k1}{z}, ymm2/m256/m64bcst |
B |
V/V |
AVX512VL AVX512F |
Convert four packed double precision floating-point values in ymm2/m256/m64bcst to four signed doubleword integers in xmm1 using truncation subject to writemask k1. |
EVEX.512.66.0F.W1 E6 /r VCVTTPD2DQ ymm1 {k1}{z}, zmm2/m512/m64bcst{sae} |
B |
V/V |
AVX512F |
Convert eight packed double precision floating-point values in zmm2/m512/m64bcst to eight signed doubleword integers in ymm1 using truncation subject to writemask k1. |
Op/En |
Tuple Type |
Operand 1 |
Operand 2 |
Operand 3 |
Operand 4 |
A |
N/A |
ModRM:reg (w) |
ModRM:r/m (r) |
N/A |
N/A |
B |
Full |
ModRM:reg (w) |
ModRM:r/m (r) |
N/A |
N/A |
Converts two, four or eight packed double precision floating-point values in the source operand (second operand) to two, four or eight packed signed doubleword integers in the destination operand (first operand).
When a conversion is inexact, a truncated (round toward zero) value is returned. If a converted result is larger than the maximum signed doubleword integer, the floating-point invalid exception is raised, and if this exception is masked, the indefinite integer value (80000000H) is returned.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is a YMM/XMM/XMM (low 64 bits) register conditionally updated with writemask k1. The upper bits (MAXVL-1:256) of the corresponding destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:64) of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.
SRC
X2
X1
X0
DEST
0
X1 |
X0 |
X3
X2
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 32 k := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[k+63:k]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL/2] := 0
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 32 k := j * 64 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) THEN DEST[i+31:i] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]) ELSE DEST[i+31:i] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[k+63:k]) FI; ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL/2] := 0
DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]) DEST[63:32] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64]) DEST[95:64] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[191:128]) DEST[127:96] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[255:192) DEST[MAXVL-1:128] := 0
DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]) DEST[63:32] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64]) DEST[MAXVL-1:64] := 0
DEST[31:0] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]) DEST[63:32] := Convert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[127:64]) DEST[127:64] := 0 DEST[MAXVL-1:128] (unmodified)
VCVTTPD2DQ __m256i _mm512_cvttpd_epi32( __m512d a); VCVTTPD2DQ __m256i _mm512_mask_cvttpd_epi32( __m256i s, __mmask8 k, __m512d a); VCVTTPD2DQ __m256i _mm512_maskz_cvttpd_epi32( __mmask8 k, __m512d a); VCVTTPD2DQ __m256i _mm512_cvtt_roundpd_epi32( __m512d a, int sae); VCVTTPD2DQ __m256i _mm512_mask_cvtt_roundpd_epi32( __m256i s, __mmask8 k, __m512d a, int sae); VCVTTPD2DQ __m256i _mm512_maskz_cvtt_roundpd_epi32( __mmask8 k, __m512d a, int sae); VCVTTPD2DQ __m128i _mm256_mask_cvttpd_epi32( __m128i s, __mmask8 k, __m256d a); VCVTTPD2DQ __m128i _mm256_maskz_cvttpd_epi32( __mmask8 k, __m256d a); VCVTTPD2DQ __m128i _mm_mask_cvttpd_epi32( __m128i s, __mmask8 k, __m128d a); VCVTTPD2DQ __m128i _mm_maskz_cvttpd_epi32( __mmask8 k, __m128d a); VCVTTPD2DQ __m128i _mm256_cvttpd_epi32 (__m256d src); CVTTPD2DQ __m128i _mm_cvttpd_epi32 (__m128d src);
Invalid, Precision.
VEX-encoded instructions, see Table 2-19, "Type 2 Class Exception Conditions." |
|
EVEX-encoded instructions, see Table 2-46, "Type E2 Class Exception Conditions." |
|
Additionally: |
|
#UD |
If VEX.vvvv != 1111B or EVEX.vvvv != 1111B. |