Opcode/ Instruction |
Op / En |
64/32 bit Mode Support |
CPUID Feature Flag |
Description |
66 0F 5A /r CVTPD2PS xmm1, xmm2/m128 |
A |
V/V |
SSE2 |
Convert two packed double precision floating-point values in xmm2/mem to two single precision floating- point values in xmm1. |
VEX.128.66.0F.WIG 5A /r VCVTPD2PS xmm1, xmm2/m128 |
A |
V/V |
AVX |
Convert two packed double precision floating-point values in xmm2/mem to two single precision floating- point values in xmm1. |
VEX.256.66.0F.WIG 5A /r VCVTPD2PS xmm1, ymm2/m256 |
A |
V/V |
AVX |
Convert four packed double precision floating-point values in ymm2/mem to four single precision floating- point values in xmm1. |
EVEX.128.66.0F.W1 5A /r VCVTPD2PS xmm1 {k1}{z}, xmm2/m128/m64bcst |
B |
V/V |
AVX512VL AVX512F |
Convert two packed double precision floating-point values in xmm2/m128/m64bcst to two single precision floating-point values in xmm1with writemask k1. |
EVEX.256.66.0F.W1 5A /r VCVTPD2PS xmm1 {k1}{z}, ymm2/m256/m64bcst |
B |
V/V |
AVX512VL AVX512F |
Convert four packed double precision floating-point values in ymm2/m256/m64bcst to four single precision floating-point values in xmm1with writemask k1. |
EVEX.512.66.0F.W1 5A /r VCVTPD2PS ymm1 {k1}{z}, zmm2/m512/m64bcst{er} |
B |
V/V |
AVX512F |
Convert eight packed double precision floating-point values in zmm2/m512/m64bcst to eight single precision floating-point values in ymm1with writemask k1. |
Op/En |
Tuple Type |
Operand 1 |
Operand 2 |
Operand 3 |
Operand 4 |
A |
N/A |
ModRM:reg (w) |
ModRM:r/m (r) |
N/A |
N/A |
B |
Full |
ModRM:reg (w) |
ModRM:r/m (r) |
N/A |
N/A |
Converts two, four or eight packed double precision floating-point values in the source operand (second operand) to two, four or eight packed single precision floating-point values in the destination operand (first operand).
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register or the embedded rounding control bits.
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is a YMM/XMM/XMM (low 64-bits) register conditionally updated with writemask k1. The upper bits (MAXVL- 1:256/128/64) of the corresponding destination are zeroed.
VEX.256 encoded version: The source operand is a YMM register or 256- bit memory location. The destination operand is an XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.
VEX.128 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:64) of the corresponding ZMM register destination are zeroed.
128-bit Legacy SSE version: The source operand is an XMM register or 128- bit memory location. The destination operand is an XMM register. Bits[127:64] of the destination XMM register are zeroed. However, the upper Bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.
VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
SRC
X0
DEST
0 |
X3 |
X2 |
X1 |
X0 |
(KL, VL) = (2, 128), (4, 256), (8, 512) IF (VL = 512) AND (EVEX.b = 1) THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; FOR j := 0 TO KL-1 i := j * 32 k := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := Convert_Double_Precision_Floating_Point_To_Single_Precision_Floating_Point(SRC[k+63:k]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL/2] := 0
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 32 k := j * 64 IF k1[j] OR *no writemask* THEN IF (EVEX.b = 1) THEN DEST[i+31:i] :=Convert_Double_Precision_Floating_Point_To_Single_Precision_Floating_Point(SRC[63:0]) ELSE DEST[i+31:i] := Convert_Double_Precision_Floating_Point_To_Single_Precision_Floating_Point(SRC[k+63:k]) FI; ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL/2] := 0
DEST[31:0] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]) DEST[63:32] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64]) DEST[95:64] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[191:128]) DEST[127:96] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[255:192) DEST[MAXVL-1:128] := 0
DEST[31:0] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]) DEST[63:32] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64]) DEST[MAXVL-1:64] := 0
DEST[31:0] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]) DEST[63:32] := Convert_Double_Precision_To_Single_Precision_Floating_Point(SRC[127:64]) DEST[127:64] := 0 DEST[MAXVL-1:128] (unmodified)
VCVTPD2PS __m256 _mm512_cvtpd_ps( __m512d a); VCVTPD2PS __m256 _mm512_mask_cvtpd_ps( __m256 s, __mmask8 k, __m512d a); VCVTPD2PS __m256 _mm512_maskz_cvtpd_ps( __mmask8 k, __m512d a); VCVTPD2PS __m256 _mm512_cvt_roundpd_ps( __m512d a, int r); VCVTPD2PS __m256 _mm512_mask_cvt_roundpd_ps( __m256 s, __mmask8 k, __m512d a, int r); VCVTPD2PS __m256 _mm512_maskz_cvt_roundpd_ps( __mmask8 k, __m512d a, int r); VCVTPD2PS __m128 _mm256_mask_cvtpd_ps( __m128 s, __mmask8 k, __m256d a); VCVTPD2PS __m128 _mm256_maskz_cvtpd_ps( __mmask8 k, __m256d a); VCVTPD2PS __m128 _mm_mask_cvtpd_ps( __m128 s, __mmask8 k, __m128d a); VCVTPD2PS __m128 _mm_maskz_cvtpd_ps( __mmask8 k, __m128d a); VCVTPD2PS __m128 _mm256_cvtpd_ps (__m256d a) CVTPD2PS __m128 _mm_cvtpd_ps (__m128d a)
Invalid, Precision, Underflow, Overflow, Denormal.
VEX-encoded instructions, see Table 2-19, "Type 2 Class Exception Conditions." |
|
EVEX-encoded instructions, see Table 2-46, "Type E2 Class Exception Conditions." |
|
Additionally: |
|
#UD |
If VEX.vvvv != 1111B or EVEX.vvvv != 1111B. |