CVTDQ2PD - Convert Packed Doubleword Integers to Packed Double Precision Floating-Point Values

Opcode/ Instruction

Op / En

64/32 bit Mode Support

CPUID Feature Flag

Description

F3 0F E6 /r CVTDQ2PD xmm1, xmm2/m64

A

V/V

SSE2

Convert two packed signed doubleword integers from xmm2/mem to two packed double precision floating-point values in xmm1.

VEX.128.F3.0F.WIG E6 /r VCVTDQ2PD xmm1, xmm2/m64

A

V/V

AVX

Convert two packed signed doubleword integers from xmm2/mem to two packed double precision floating-point values in xmm1.

VEX.256.F3.0F.WIG E6 /r VCVTDQ2PD ymm1, xmm2/m128

A

V/V

AVX

Convert four packed signed doubleword integers from xmm2/mem to four packed double precision floating-point values in ymm1.

EVEX.128.F3.0F.W0 E6 /r VCVTDQ2PD xmm1 {k1}{z}, xmm2/m64/m32bcst

B

V/V

AVX512VL AVX512F

Convert 2 packed signed doubleword integers from xmm2/m64/m32bcst to eight packed double precision floating-point values in xmm1 with writemask k1.

EVEX.256.F3.0F.W0 E6 /r VCVTDQ2PD ymm1 {k1}{z}, xmm2/m128/m32bcst

B

V/V

AVX512VL AVX512F

Convert 4 packed signed doubleword integers from xmm2/m128/m32bcst to 4 packed double precision floating-point values in ymm1 with writemask k1.

EVEX.512.F3.0F.W0 E6 /r VCVTDQ2PD zmm1 {k1}{z}, ymm2/m256/m32bcst

B

V/V

AVX512F

Convert eight packed signed doubleword integers from ymm2/m256/m32bcst to eight packed double precision floating-point values in zmm1 with writemask k1.

Instruction Operand Encoding

Op/En

Tuple Type

Operand 1

Operand 2

Operand 3

Operand 4

A

N/A

ModRM:reg (w)

ModRM:r/m (r)

N/A

N/A

B

Half

ModRM:reg (w)

ModRM:r/m (r)

N/A

N/A

Description

Converts two, four or eight packed signed doubleword integers in the source operand (the second operand) to two, four or eight packed double precision floating-point values in the destination operand (the first operand).

EVEX encoded versions: The source operand can be a YMM/XMM/XMM (low 64 bits) register, a 256/128/64-bit memory location or a 256/128/64-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1. Attempt to encode this instruction with EVEX embedded rounding is ignored.

VEX.256 encoded version: The source operand is an XMM register or 128- bit memory location. The destination operand is a YMM register.

VEX.128 encoded version: The source operand is an XMM register or 64- bit memory location. The destination operand is a XMM register. The upper Bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.

128-bit Legacy SSE version: The source operand is an XMM register or 64- bit memory location. The destination operand is an XMM register. The upper Bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.

VEX.vvvv and EVEX.vvvv are reserved and must be 1111b, otherwise instructions will #UD.

X3

X2

X0

SRC

DEST

Figure 3-11. CVTDQ2PD (VEX.256 encoded version)

Operation

VCVTDQ2PD (EVEX Encoded Versions) When SRC Operand is a Register

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1
   i := j * 64
   k := j * 32
   IF k1[j] OR *no writemask*
       THEN DEST[i+63:i] :=
            Convert_Integer_To_Double_Precision_Floating_Point(SRC[k+31:k])
       ELSE 
            IF *merging-masking*                ; merging-masking
                THEN *DEST[i+63:i] remains unchanged*
                ELSE                            ; zeroing-masking
                     DEST[i+63:i] := 0
            FI
   FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTDQ2PD (EVEX Encoded Versions) When SRC Operand is a Memory Source

(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1
   i := j * 64
   k := j * 32
   IF k1[j] OR *no writemask*
       THEN 
            IF (EVEX.b = 1) 
                THEN
                     DEST[i+63:i] :=
            Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
                ELSE 
                     DEST[i+63:i] :=
            Convert_Integer_To_Double_Precision_Floating_Point(SRC[k+31:k])
            FI;
       ELSE 
            IF *merging-masking*                ; merging-masking
                THEN *DEST[i+63:i] remains unchanged*
                ELSE                            ; zeroing-masking
                     DEST[i+63:i] := 0
            FI
   FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

VCVTDQ2PD (VEX.256 Encoded Version)

DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[191:128] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[95:64])
DEST[255:192] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[127:96)
DEST[MAXVL-1:256] := 0

VCVTDQ2PD (VEX.128 Encoded Version)

DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[MAXVL-1:128] := 0

CVTDQ2PD (128-bit Legacy SSE Version)

DEST[63:0] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[31:0])
DEST[127:64] := Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32])
DEST[MAXVL-1:128] (unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VCVTDQ2PD __m512d _mm512_cvtepi32_pd( __m256i a);
VCVTDQ2PD __m512d _mm512_mask_cvtepi32_pd( __m512d s, __mmask8 k, __m256i a);
VCVTDQ2PD __m512d _mm512_maskz_cvtepi32_pd( __mmask8 k, __m256i a);
VCVTDQ2PD __m256d _mm256_cvtepi32_pd (__m128i src);
VCVTDQ2PD __m256d _mm256_mask_cvtepi32_pd( __m256d s, __mmask8 k, __m256i a);
VCVTDQ2PD __m256d _mm256_maskz_cvtepi32_pd( __mmask8 k, __m256i a);
VCVTDQ2PD __m128d _mm_mask_cvtepi32_pd( __m128d s, __mmask8 k, __m128i a);
VCVTDQ2PD __m128d _mm_maskz_cvtepi32_pd( __mmask8 k, __m128i a);
CVTDQ2PD __m128d _mm_cvtepi32_pd (__m128i src)

Other Exceptions

VEX-encoded instructions, see Table 2-22, "Type 5 Class Exception Conditions."

EVEX-encoded instructions, see Table 2-51, "Type E5 Class Exception Conditions."

Additionally:

#UD

If VEX.vvvv != 1111B or EVEX.vvvv != 1111B.