Opcode/ Instruction |
Op / En |
64/32 bit Mode Support |
CPUID Feature Flag |
Description |
F3 0F 58 /r ADDSS xmm1, xmm2/m32 |
A |
V/V |
SSE |
Add the low single precision floating-point value from xmm2/mem to xmm1 and store the result in xmm1. |
VEX.LIG.F3.0F.WIG 58 /r VADDSS xmm1,xmm2, xmm3/m32 |
B |
V/V |
AVX |
Add the low single precision floating-point value from xmm3/mem to xmm2 and store the result in xmm1. |
EVEX.LLIG.F3.0F.W0 58 /r VADDSS xmm1{k1}{z}, xmm2, xmm3/m32{er} |
C |
V/V |
AVX512F |
Add the low single precision floating-point value from xmm3/m32 to xmm2 and store the result in xmm1with writemask k1. |
Op/En |
Tuple Type |
Operand 1 |
Operand 2 |
Operand 3 |
Operand 4 |
A |
N/A |
ModRM:reg (r, w) |
ModRM:r/m (r) |
N/A |
N/A |
B |
N/A |
ModRM:reg (w) |
VEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
C |
Tuple1 Scalar |
ModRM:reg (w) |
EVEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
Adds the low single precision floating-point values from the second source operand and the first source operand, and stores the double precision floating-point result in the destination operand.
The second source operand can be an XMM register or a 64-bit memory location. The first source and destination operands are XMM registers.
128-bit Legacy SSE version: The first source and destination operands are the same. Bits (MAXVL-1:32) of the corresponding the destination register remain unchanged.
EVEX and VEX.128 encoded version: The first source operand is encoded by EVEX.vvvv/VEX.vvvv. Bits (127:32) of the XMM register destination are copied from corresponding bits in the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.
EVEX version: The low doubleword element of the destination is updated according to the writemask.
Software should ensure VADDSS is encoded with VEX.L=0. Encoding VADDSS with VEX.L=1 may encounter unpre- dictable behavior across different processor generations.
IF (EVEX.b = 1) AND SRC2 *is a register* THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; IF k1[0] or *no writemask* THEN DEST[31:0] := SRC1[31:0] + SRC2[31:0] ELSE IF *merging-masking* ; merging-masking THEN *DEST[31:0] remains unchanged* ELSE ; zeroing-masking THEN DEST[31:0] := 0 FI; FI; DEST[127:32] := SRC1[127:32] DEST[MAXVL-1:128] := 0
DEST[31:0] := SRC1[31:0] + SRC2[31:0] DEST[127:32] := SRC1[127:32] DEST[MAXVL-1:128] := 0
DEST[31:0] := DEST[31:0] + SRC[31:0] DEST[MAXVL-1:32] (Unmodified)
VADDSS __m128 _mm_mask_add_ss (__m128 s, __mmask8 k, __m128 a, __m128 b); VADDSS __m128 _mm_maskz_add_ss (__mmask8 k, __m128 a, __m128 b); VADDSS __m128 _mm_add_round_ss (__m128 a, __m128 b, int); VADDSS __m128 _mm_mask_add_round_ss (__m128 s, __mmask8 k, __m128 a, __m128 b, int); VADDSS __m128 _mm_maskz_add_round_ss (__mmask8 k, __m128 a, __m128 b, int); ADDSS __m128 _mm_add_ss (__m128 a, __m128 b);
Overflow, Underflow, Invalid, Precision, Denormal.
VEX-encoded instruction, see Table 2-20, "Type 3 Class Exception Conditions."
EVEX-encoded instruction, see Table 2-47, "Type E3 Class Exception Conditions."