ADDSD - Add Scalar Double Precision Floating-Point Values

Opcode/ Instruction

Op / En

64/32 bit Mode Support

CPUID Feature Flag

Description

F2 0F 58 /r ADDSD xmm1, xmm2/m64

A

V/V

SSE2

Add the low double precision floating-point value from xmm2/mem to xmm1 and store the result in xmm1.

VEX.LIG.F2.0F.WIG 58 /r VADDSD xmm1, xmm2, xmm3/m64

B

V/V

AVX

Add the low double precision floating-point value from xmm3/mem to xmm2 and store the result in xmm1.

EVEX.LLIG.F2.0F.W1 58 /r VADDSD xmm1 {k1}{z}, xmm2, xmm3/m64{er}

C

V/V

AVX512F

Add the low double precision floating-point value from xmm3/m64 to xmm2 and store the result in xmm1 with writemask k1.

Instruction Operand Encoding

Op/En

Tuple Type

Operand 1

Operand 2

Operand 3

Operand 4

A

N/A

ModRM:reg (r, w)

ModRM:r/m (r)

N/A

N/A

B

N/A

ModRM:reg (w)

VEX.vvvv (r)

ModRM:r/m (r)

N/A

C

Tuple1 Scalar

ModRM:reg (w)

EVEX.vvvv (r)

ModRM:r/m (r)

N/A

Description

Adds the low double precision floating-point values from the second source operand and the first source operand and stores the double precision floating-point result in the destination operand.

The second source operand can be an XMM register or a 64-bit memory location. The first source and destination operands are XMM registers.

128-bit Legacy SSE version: The first source and destination operands are the same. Bits (MAXVL-1:64) of the corresponding destination register remain unchanged.

EVEX and VEX.128 encoded version: The first source operand is encoded by EVEX.vvvv/VEX.vvvv. Bits (127:64) of the XMM register destination are copied from corresponding bits in the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.

EVEX version: The low quadword element of the destination is updated according to the writemask.

Software should ensure VADDSD is encoded with VEX.L=0. Encoding VADDSD with VEX.L=1 may encounter unpre- dictable behavior across different processor generations.

Operation

VADDSD (EVEX Encoded Version)

IF (EVEX.b = 1) AND SRC2 *is a register*
   THEN
       SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);
   ELSE 
       SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);
FI;
IF k1[0] or *no writemask*
   THEN    DEST[63:0] := SRC1[63:0] + SRC2[63:0]
   ELSE 
       IF *merging-masking*                ; merging-masking
            THEN *DEST[63:0] remains unchanged*
            ELSE                            ; zeroing-masking
                THEN DEST[63:0] := 0
       FI;
FI;
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

VADDSD (VEX.128 Encoded Version)

DEST[63:0] := SRC1[63:0] + SRC2[63:0]
DEST[127:64] := SRC1[127:64]
DEST[MAXVL-1:128] := 0

ADDSD (128-bit Legacy SSE Version)

DEST[63:0] := DEST[63:0] + SRC[63:0]
DEST[MAXVL-1:64] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

VADDSD __m128d _mm_mask_add_sd (__m128d s, __mmask8 k, __m128d a, __m128d b);
VADDSD __m128d _mm_maskz_add_sd (__mmask8 k, __m128d a, __m128d b);
VADDSD __m128d _mm_add_round_sd (__m128d a, __m128d b, int);
VADDSD __m128d _mm_mask_add_round_sd (__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VADDSD __m128d _mm_maskz_add_round_sd (__mmask8 k, __m128d a, __m128d b, int);
ADDSD __m128d _mm_add_sd (__m128d a, __m128d b);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

VEX-encoded instruction, see Table 2-20, "Type 3 Class Exception Conditions."

EVEX-encoded instruction, see Table 2-47, "Type E3 Class Exception Conditions."