Opcode/ Instruction |
Op / En |
64/32 bit Mode Support |
CPUID Feature Flag |
Description |
F2 0F 58 /r ADDSD xmm1, xmm2/m64 |
A |
V/V |
SSE2 |
Add the low double precision floating-point value from xmm2/mem to xmm1 and store the result in xmm1. |
VEX.LIG.F2.0F.WIG 58 /r VADDSD xmm1, xmm2, xmm3/m64 |
B |
V/V |
AVX |
Add the low double precision floating-point value from xmm3/mem to xmm2 and store the result in xmm1. |
EVEX.LLIG.F2.0F.W1 58 /r VADDSD xmm1 {k1}{z}, xmm2, xmm3/m64{er} |
C |
V/V |
AVX512F |
Add the low double precision floating-point value from xmm3/m64 to xmm2 and store the result in xmm1 with writemask k1. |
Op/En |
Tuple Type |
Operand 1 |
Operand 2 |
Operand 3 |
Operand 4 |
A |
N/A |
ModRM:reg (r, w) |
ModRM:r/m (r) |
N/A |
N/A |
B |
N/A |
ModRM:reg (w) |
VEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
C |
Tuple1 Scalar |
ModRM:reg (w) |
EVEX.vvvv (r) |
ModRM:r/m (r) |
N/A |
Adds the low double precision floating-point values from the second source operand and the first source operand and stores the double precision floating-point result in the destination operand.
The second source operand can be an XMM register or a 64-bit memory location. The first source and destination operands are XMM registers.
128-bit Legacy SSE version: The first source and destination operands are the same. Bits (MAXVL-1:64) of the corresponding destination register remain unchanged.
EVEX and VEX.128 encoded version: The first source operand is encoded by EVEX.vvvv/VEX.vvvv. Bits (127:64) of the XMM register destination are copied from corresponding bits in the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.
EVEX version: The low quadword element of the destination is updated according to the writemask.
Software should ensure VADDSD is encoded with VEX.L=0. Encoding VADDSD with VEX.L=1 may encounter unpre- dictable behavior across different processor generations.
IF (EVEX.b = 1) AND SRC2 *is a register* THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; IF k1[0] or *no writemask* THEN DEST[63:0] := SRC1[63:0] + SRC2[63:0] ELSE IF *merging-masking* ; merging-masking THEN *DEST[63:0] remains unchanged* ELSE ; zeroing-masking THEN DEST[63:0] := 0 FI; FI; DEST[127:64] := SRC1[127:64] DEST[MAXVL-1:128] := 0
DEST[63:0] := SRC1[63:0] + SRC2[63:0] DEST[127:64] := SRC1[127:64] DEST[MAXVL-1:128] := 0
DEST[63:0] := DEST[63:0] + SRC[63:0] DEST[MAXVL-1:64] (Unmodified)
VADDSD __m128d _mm_mask_add_sd (__m128d s, __mmask8 k, __m128d a, __m128d b); VADDSD __m128d _mm_maskz_add_sd (__mmask8 k, __m128d a, __m128d b); VADDSD __m128d _mm_add_round_sd (__m128d a, __m128d b, int); VADDSD __m128d _mm_mask_add_round_sd (__m128d s, __mmask8 k, __m128d a, __m128d b, int); VADDSD __m128d _mm_maskz_add_round_sd (__mmask8 k, __m128d a, __m128d b, int); ADDSD __m128d _mm_add_sd (__m128d a, __m128d b);
Overflow, Underflow, Invalid, Precision, Denormal.
VEX-encoded instruction, see Table 2-20, "Type 3 Class Exception Conditions."
EVEX-encoded instruction, see Table 2-47, "Type E3 Class Exception Conditions."