
Document Number: MD00101
Revision 3.00
April 30, 2010

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

MIPS
Verified

™

MIPS® Architecture for Programmers
Volume IV-d:The SmartMIPS®

Application-Specific Extension to the
MIPS32® Architecture

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Template: nB1.02, Built with tags: 2B ARCH MIPS32

Copyright © 2004-2005, 2008, 2010 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of
this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of this information, or any related documentation of any kind, including related technical data or manuals,
is an agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16, MIPS16e, MIPS-Based,
MIPSsim, MIPSpro, MIPS Technologies logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd,
M4K, M14K, 5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, R3000, R4000, R5000,
ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2
FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microMIPS,
OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2, SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS
Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 3

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

4MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 5

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1: About This Book .. 11
1.1: Typographical Conventions ... 11

1.1.1: Italic Text.. 11
1.1.2: Bold Text .. 12
1.1.3: Courier Text ... 12

1.2: UNPREDICTABLE and UNDEFINED ... 12
1.2.1: UNPREDICTABLE... 12
1.2.2: UNDEFINED .. 13
1.2.3: UNSTABLE .. 13

1.3: Special Symbols in Pseudocode Notation... 13
1.4: For More Information ... 16

Chapter 2: Guide to the Instruction Set .. 17
2.1: Understanding the Instruction Fields ... 17

2.1.1: Instruction Fields .. 19
2.1.2: Instruction Descriptive Name and Mnemonic... 19
2.1.3: Format Field ... 19
2.1.4: Purpose Field ... 20
2.1.5: Description Field .. 20
2.1.6: Restrictions Field.. 20
2.1.7: Operation Field... 21
2.1.8: Exceptions Field... 21
2.1.9: Programming Notes and Implementation Notes Fields.. 22

2.2: Operation Section Notation and Functions.. 22
2.2.1: Instruction Execution Ordering... 22
2.2.2: Pseudocode Functions... 22

2.3: Op and Function Subfield Notation.. 31
2.4: FPU Instructions .. 31

Chapter 3: The SmartMIPS® Application-Specific Extension to the MIPS32® Architecture......... 33
3.1: Base Architecture Requirements... 33
3.2: Software Detection of the ASE .. 33
3.3: Compliance and Subsetting... 33
3.4: Overview of the SmartMIPS ASE .. 34

3.4.1: Support for Cryptographic Algorithms in the SmartMIPS ASE... 34
3.4.2: Code Density Optimization.. 34
3.4.3: Other ISA Enhancements .. 35
3.4.4: Privileged Resource Architecture Enhancements.. 36

3.5: Instruction Bit Encoding... 37

Chapter 4: The SmartMIPS® Cryptographic Feature Set.. 41
4.1: The Special Register ACX... 41
4.2: Change to MADDU Semantics .. 42
4.3: Change to MULTU Semantics... 42
4.4: Possible Changes to other Multiply/Accumulate Semantics.. 42
4.5: New Instructions .. 42

6MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

4.5.1: MFLHXU .. 42
4.5.2: MTLHX... 42
4.5.3: MADDP .. 42
4.5.4: MULTP... 42
4.5.5: PPERM .. 43
4.5.6: ROTR... 43
4.5.7: ROTRV... 43

Chapter 5: Other ISA Elements of the SmartMIPS® ASE.. 45
5.1: LWXS Instruction... 45

Chapter 6: The SmartMIPS® Release 3 Privileged Resource Architecture..................................... 57
6.1: Introduction.. 57
6.2: Overview.. 57
6.3: Compliance.. 57
6.4: Interaction between the SmartMIPS ASE and Release 2 of the MIPS32 Architecture 58
6.5: The SmartMIPS System Coprocessor... 58

6.5.1: CP0 Register Summary ... 58
6.6: Virtual Memory .. 58

6.6.1: TLB-Based Virtual Address Translation ... 58
6.6.2: General Exception Processing... 61
6.6.3: TLB Refill Exception... 61
6.6.4: TLB Invalid Exception .. 61
6.6.5: TLB Modified Exception ... 62

6.7: CP0 Registers .. 62
6.7.1: PageMask Register (CP0 Register 5, Select 0) ... 62
6.7.2: PageGrain Register (CP0 Register 5, Select 1)... 64
6.7.3: EntryHi Register (CP0 Register 10, Select 0 ... 66
6.7.4: Configuration Register 3 (CP0 Register 16, Select 3).. 66

Appendix A: The SmartMIPS® Release 2 Privileged Resource Architecture 67
A.1: Introduction ... 67
A.2: Overview ... 67
A.3: Compliance ... 67
A.4: Interaction between the SmartMIPS ASE and Release 2 of the MIPS32 Architecture 68
A.5: The SmartMIPS System Coprocessor .. 68

A.5.1: CP0 Register Summary ... 68
A.6: Virtual Memory .. 69

A.6.1: TLB-Based Virtual Address Translation... 69
A.6.2: General Exception Processing .. 72
A.6.3: TLB Refill Exception .. 72
A.6.4: TLB Invalid Exception .. 72
A.6.5: TLB Modified Exception... 73

A.7: CP0 Registers .. 73
A.7.1: EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0) ... 73
A.7.2: Context Register (CP0 Register 4, Select 0) ... 75
A.7.3: ContextConfig Register (CP0 Register 4, Select 1)... 76
A.7.4: PageMask Register (CP0 Register 5, Select 0)... 77
A.7.5: PageGrain Register (CP0 Register 5, Select 1) .. 79
A.7.6: EntryHi Register (CP0 Register 10, Select 0 ... 81
A.7.7: Configuration Register 3 (CP0 Register 16, Select 3) ... 81

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 7

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Appendix B: Revision History ... 83

8MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 2.1: Example of Instruction Description ... 18
Figure 2.2: Example of Instruction Fields.. 19
Figure 2.3: Example of Instruction Descriptive Name and Mnemonic .. 19
Figure 2.4: Example of Instruction Format .. 19
Figure 2.5: Example of Instruction Purpose.. 20
Figure 2.6: Example of Instruction Description ... 20
Figure 2.7: Example of Instruction Restrictions... 21
Figure 2.8: Example of Instruction Operation.. 21
Figure 2.9: Example of Instruction Exception.. 21
Figure 2.10: Example of Instruction Programming Notes ... 22
Figure 2.11: COP_LW Pseudocode Function... 23
Figure 2.12: COP_LD Pseudocode Function.. 23
Figure 2.13: COP_SW Pseudocode Function... 23
Figure 2.14: COP_SD Pseudocode Function ... 24
Figure 2.15: CoprocessorOperation Pseudocode Function.. 24
Figure 2.16: AddressTranslation Pseudocode Function ... 24
Figure 2.17: LoadMemory Pseudocode Function ... 25
Figure 2.18: StoreMemory Pseudocode Function... 25
Figure 2.19: Prefetch Pseudocode Function... 26
Figure 2.20: SyncOperation Pseudocode Function .. 27
Figure 2.21: ValueFPR Pseudocode Function.. 27
Figure 2.22: StoreFPR Pseudocode Function .. 28
Figure 2.23: CheckFPException Pseudocode Function.. 29
Figure 2.24: FPConditionCode Pseudocode Function.. 29
Figure 2.25: SetFPConditionCode Pseudocode Function .. 29
Figure 2.26: SignalException Pseudocode Function .. 30
Figure 2.27: SignalDebugBreakpointException Pseudocode Function... 30
Figure 2.28: SignalDebugModeBreakpointException Pseudocode Function.. 30
Figure 2.29: NullifyCurrentInstruction PseudoCode Function ... 31
Figure 2.30: JumpDelaySlot Pseudocode Function.. 31
Figure 2.31: PolyMult Pseudocode Function .. 31
Figure 6.1: SmartMIPS PageMask Register Format... 62
Figure 6.2: SmartMIPS PageGrain Register Format... 64
Figure 6.3: SmartMIPS EntryHi Register Format .. 66
Figure A.1: Contents of a TLB Entry .. 69
Figure A.2: SmartMIPS EntryLo0, EntryLo1 Register Format... 74
Figure A.3: SmartMIPS Context Register Format .. 76
Figure A.4: SmartMIPS ContextConfig Register Format... 77
Figure A.5: SmartMIPS PageMask Register Format .. 78
Figure A.6: SmartMIPS PageGrain Register Format .. 79
Figure A.7: SmartMIPS EntryHi Register Format.. 81

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 9

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1.1: Symbols Used in Instruction Operation Statements... 13
Table 2.1: AccessLength Specifications for Loads/Stores.. 26
Table 3.1: Symbols Used in the Instruction Encoding Tables... 37
Table 3.2: SmartMIPS ASE Encoding of the Opcode Field .. 37
Table 3.3: SmartMIPS ASE SPECIAL Opcode Encoding of Function Field ... 38
Table 3.4: SmartMIPS ASE SPECIAL2 Encoding of Function Field... 38
Table 3.5: SmartMIPS ASE SRL Encoding of Shift/Rotate... 38
Table 3.6: SmartMIPS ASE SRLV Encoding of Shift/Rotate .. 38
Table 3.7: SmartMIPS ASE MFLO Encoding of MFLO/MFLHXU... 38
Table 3.8: SmartMIPS ASE MTLO Encoding of MTLO/MTLHX ... 39
Table 3.9: SmartMIPS ASE MULTU Encoding of MULTU/MULTP... 39
Table 3.10: SmartMIPS ASE MADDU Encoding of MADDU/MADDP/PPERM .. 39
Table 3.11: SmartMIPS ASE LXS Encoding of LWXS.. 39
Table 6.1: SmartMIPS Changes to Coprocessor 0 Registers in Numerical Order.. 58
Table 6.2: Physical Address Generation... 60
Table 6.3: TLB Refill Exception State Saved in Addition to the Cause Register... 61
Table 6.4: TLB Invalid Exception State Saved in Addition to the Cause Register .. 61
Table 6.5: TLB Modified Exception State Saved in Addition to the Cause Register ... 62
Table 6.7: Values for the Mask Field of the PageMask Register .. 63
Table 6.6: PageMask Register Field Descriptions .. 63
Table 6.8: SmartMIPS PageGrain Register Field Descriptions... 64
Table 6.9: PageGrain Implementation Subset Behavior ... 65
Table 6.10: EntryHi Register Field Descriptions ... 66
Table A.1: SmartMIPS Changes to Coprocessor 0 Registers in Numerical Order ... 68
Table A.2: Physical Address Generation .. 71
Table A.3: TLB Refill Exception State Saved in Addition to the Cause Register .. 72
Table A.4: TLB Invalid Exception State Saved in Addition to the Cause Register.. 73
Table A.5: TLB Modified Exception State Saved in Addition to the Cause Register... 73
Table A.6: SmartMIPS EntryLo0, EntryLo1 Register Field Descriptions... 74
Table A.7: SmartMIPS Context Register Field Descriptions ... 76
Table A.8: SmartMIPS ContextConfig Register Field Descriptions... 77
Table A.9: Recommended ContextConfig Values for SmartMIPS.. 77
Table A.10: PageMask Register Field Descriptions.. 78
Table A.11: Values for the Mask Field of the PageMask Register.. 78
Table A.12: SmartMIPS PageGrain Register Field Descriptions .. 79
Table A.13: PageGrain Implementation Subset Behavior... 80
Table A.14: EntryHi Register Field Descriptions ... 81

10 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Chapter 1

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 11

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

About This Book

The MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the
MIPS32® Architecture comes as part of a multi-volume set.

• Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

• Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS32™ Architecture

• Volume II-A provides detailed descriptions of each instruction in the MIPS32® instruction set

• Volume II-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

• Volume III describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture and
microMIPS64™. It is not applicable to the MIPS32® document set nor the microMIPS32™ document set

• Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architecture

• Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture

• Volume IV-e describes the MIPS® DSP Application-Specific Extension to the MIPS® Architecture

• Volume IV-f describes the MIPS® MT Application-Specific Extension to the MIPS® Architecture

• Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

1.1.1 Italic Text

• is used for emphasis

 About This Book

12 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

• is used for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D,
and PS

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

• UNPREDICTABLE operations must not halt or hang the processor

1.3 Special Symbols in Pseudocode Notation

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 13

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
there is no exit other than powering down the processor). The assertion of any of the reset signals must restore
the processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

xy..z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less
than z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction

*, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

 About This Book

14 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].

FPR[x] Floating Point (Coprocessor unit 1), general register x

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0 →Little-Endian, 1 → Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 → Little-Endian, 1 → Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRE and User mode).

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

1.3 Special Symbols in Pseudocode Notation

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 15

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction
time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labelled I+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.
In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the
restart address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register
on an exception. The PC value contains a full 32-bit address all of which are significant during a memory ref-
erence.

ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36

physical address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32 Release 1, the FPU
has 32 32-bit FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, (and option-
ally in MIPS32 Release2 and MIPSr3) the FPU has 32 64-bit FPRs in which 64-bit data types are stored in
any FPR.

In MIPS32 Release 1 implementations, FP32RegistersMode is always a 0. MIPS64 implementations have a
compatibility mode in which the processor references the FPRs as if it were a MIPS32 implementation. In
such a case FP32RegisterMode is computed from the FR bit in the Status register. If this bit is a 0, the pro-
cessor operates as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.
The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch
or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e instructions

 About This Book

16 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS
URL: http://www.mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

SignalException(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

http://www.mips.com/
mailto:architecture@mips.com

Chapter 2

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 17

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed below:

• “Instruction Fields” on page 19

• “Instruction Descriptive Name and Mnemonic” on page 19

• “Format Field” on page 19

• “Purpose Field” on page 20

• “Description Field” on page 20

• “Restrictions Field” on page 20

• “Operation Field” on page 21

• “Exceptions Field” on page 21

• “Programming Notes and Implementation Notes Fields” on page 22

 Guide to the Instruction Set

18 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Figure 2.1 Example of Instruction Description

EXAMPLE
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0 rt rd
0

00000
EXAMPLE

000000

6 5 5 5 5 6

Format: EXAMPLE fd,rs,rt MIPS32

Purpose: Example Instruction Name

To execute an EXAMPLE op.

Description: GPR[rd] ← GPR[r]s exampleop GPR[rt]

This section describes the operation of the instruction in text, tables, and illustrations. It
includes information that would be difficult to encode in the Operation section.

Restrictions:

This section lists any restrictions for the instruction. This can include values of the instruc-
tion encoding fields such as register specifiers, operand values, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca-
tions.

Operation:

/* This section describes the operation of an instruction in */
/* a high-level pseudo-language. It is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. */
temp ← GPR[rs] exampleop GPR[rt]
GPR[rd] ← temp

Exceptions:

A list of exceptions taken by the instruction

Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction

Implementation Notes:

Like Programming Notes, except for processor implementors

Example Instruction Name EXAMPLEInstruction Mnemonic and
Descriptive Name

Instruction encoding
constant and variable field
names and values

Architecture level at which
instruction was defined/redefined

Assembler format(s) for each
definition

Short description

Symbolic description

Full description of
instruction operation

Restrictions on instruction
and operands

High-level language
description of instruction
operation

Exceptions that
instruction can cause

Notes for programmers

Notes for implementors

2.1 Understanding the Instruction Fields

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 19

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

• The values of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an example,
see C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level at
which the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
ADD

100000

6 5 5 5 5 6

Add Word ADD

Format: ADD fd,rs,rt MIPS32

 Guide to the Instruction Set

20 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 2.6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “CP1 register
fd” is the coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control
/Status register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

• Valid values for instruction fields (for example, see floating point ADD.fmt)

• ALIGNMENT requirements for memory addresses (for example, see LW)

• Valid values of operands (for example, see ALNV.PS)

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR[rd] ← GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit
result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPR rd.

2.1 Understanding the Instruction Fields

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 21

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

• Valid operand formats (for example, see floating point ADD.fmt)

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

• Valid memory access types (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. This formal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 2.8 Example of Instruction Operation

See 2.2 “Operation Section Notation and Functions” on page 22 for more information on the formal notation used
here.

2.1.8 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

Restrictions:

None

Operation:

temp ← (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp
endif

Exceptions:

Integer Overflow

 Guide to the Instruction Set

22 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

2.1.9 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not nec-
essary to describe the instruction and does not belong in the description sections.

Figure 2.10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

• “Instruction Execution Ordering” on page 22

• “Pseudocode Functions” on page 22

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:

• “Coprocessor General Register Access Functions” on page 22

• “Memory Operation Functions” on page 24

• “Floating Point Functions” on page 27

• “Miscellaneous Functions” on page 30

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and
how a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted into
the functions described in this section.

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 23

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-
word in coprocessor general register rt.

Figure 2.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW

COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-
tents of memdouble in coprocessor general register rt.

Figure 2.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general register rt.

Figure 2.13 COP_SW Pseudocode Function

dataword ← COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the
low-order doubleword in coprocessor general register rt.

 Guide to the Instruction Set

24 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Figure 2.14 COP_SD Pseudocode Function

datadouble ← COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD

CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 2.15 CoprocessorOperation Pseudocode Function

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the
AccessLength field. The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit
of memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the reference is to Instructions or Data (IorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual address is in one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.16 AddressTranslation Pseudocode Function

(pAddr, CCA) ← AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute,the method used to access caches*/

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 25

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

LoadMemory

The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (IorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The data is
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
access type of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the access type is cached but the data is not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this
block is the entire memory element.

Figure 2.17 LoadMemory Pseudocode Function

MemElem ← LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */
/* respectively. */
/* CCA: Cacheability&CoherencyAttribute=method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */
/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

StoreMemory

The StoreMemory function stores a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the
bytes that are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytes in memory will actu-
ally be changed.

Figure 2.18 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

 Guide to the Instruction Set

26 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength: Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, */
/* aligned on a 4- or 8-byte boundary. For a */
/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr: physical address */
/* vAddr: virtual address */

endfunction StoreMemory

Prefetch

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 2.19 Prefetch Pseudocode Function

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 27

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

This action makes the effects of the synchronizable loads and stores indicated by stype occur in the same order for all
processors.

Figure 2.20 SyncOperation Pseudocode Function

SyncOperation(stype)

/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

Figure 2.21 ValueFPR Pseudocode Function

value ← ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

valueFPR ← FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr0 ≠ 0) then
valueFPR ← UNPREDICTABLE

else
valueFPR ← FPR[fpr+1]31..0 || FPR[fpr]31..0

endif
else

valueFPR ← FPR[fpr]
endif

L, PS:
if (FP32RegistersMode = 0) then

valueFPR ← UNPREDICTABLE

 Guide to the Instruction Set

28 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

else
valueFPR ← FPR[fpr]

endif

DEFAULT:
valueFPR ← UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

StoreFPR

Figure 2.22 StoreFPR Pseudocode Function

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

FPR[fpr] ← value

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr0 ≠ 0) then
UNPREDICTABLE

else
FPR[fpr] ← UNPREDICTABLE32 || value31..0
FPR[fpr+1] ← UNPREDICTABLE32 || value63..32

endif
else

FPR[fpr] ← value
endif

L, PS:
if (FP32RegistersMode = 0) then

UNPREDICTABLE
else

FPR[fpr] ← value
endif

endcase

2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 29

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

endfunction StoreFPR

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

CheckFPException

Figure 2.23 CheckFPException Pseudocode Function

CheckFPException()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */
/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if ((FCSR17 = 1) or
((FCSR16..12 and FCSR11..7) ≠ 0))) then

SignalException(FloatingPointException)
endif

endfunction CheckFPException

FPConditionCode

The FPConditionCode function returns the value of a specific floating point condition code.

Figure 2.24 FPConditionCode Pseudocode Function

tf ←FPConditionCode(cc)

/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then
FPConditionCode ← FCSR23

else
FPConditionCode ← FCSR24+cc

endif

endfunction FPConditionCode

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 2.25 SetFPConditionCode Pseudocode Function

SetFPConditionCode(cc, tf)
if cc = 0 then

FCSR ← FCSR31..24 || tf || FCSR22..0
else

FCSR ← FCSR31..25+cc || tf || FCSR23+cc..0
endif

endfunction SetFPConditionCode

 Guide to the Instruction Set

30 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SignalException

The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.26 SignalException Pseudocode Function

SignalException(Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from
non-Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.27 SignalDebugBreakpointException Pseudocode Function

SignalDebugBreakpointException()

endfunction SignalDebugBreakpointException

SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.28 SignalDebugModeBreakpointException Pseudocode Function

SignalDebugModeBreakpointException()

endfunction SignalDebugModeBreakpointException

NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

2.3 Op and Function Subfield Notation

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 31

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Figure 2.29 NullifyCurrentInstruction PseudoCode Function

NullifyCurrentInstruction()

endfunction NullifyCurrentInstruction

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction at vAddr is executed in a jump delay slot. A jump delay slot always immedi-
ately follows a JR, JAL, JALR, or JALX instruction.

Figure 2.30 JumpDelaySlot Pseudocode Function

JumpDelaySlot(vAddr)

/* vAddr:Virtual address */

endfunction JumpDelaySlot

PolyMult

The PolyMult function multiplies two binary polynomial coefficients.

Figure 2.31 PolyMult Pseudocode Function

PolyMult(x, y)
temp ← 0
for i in 0 .. 31

if xi = 1 then
temp ← temp xor (y(31-i)..0 || 0

i)
endif

endfor

PolyMult ← temp

endfunction PolyMult

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, a single field has both fixed and variable subfields, so the name con-
tains both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such as fs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-
case.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an alias is always lowercase since it refers to a
variable subfield.

 Guide to the Instruction Set

32 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 31 for a description of the op and function subfields.

Chapter 3

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 33

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

The SmartMIPS® Application-Specific Extension to the
MIPS32® Architecture

3.1 Base Architecture Requirements

The SmartMIPS® ASE requires the following base architecture support:

• The MIPS32 Architecture: The SmartMIPS ASE requires a compliant implementation of the MIPS Architec-
ture.

• For Release 2 (and subsequent) of the MIPS® Architecture, the following COP0 register field settings and
implementation of features are required:

1. Config3SP must be clear to denote that the Release 2 definition of 1KB Virtual pages is not implemented.

• For Release 3 of the MIPS® Architecture, the following COP0 register field settings and implementation of fea-
tures are required:

1. Config3RXI must be set to denote that the RI/XI protection feature is implemented in the TLB.

2. Both PageGrainRIE and PageGrainXIE bits must be writeable to denote that both protection bits are imple-
mented.

3. Config3CTXTC must be set to denote that the ContextConfig register is implemented.

Software can use the asserted values of Config3RXI or Config3CTXTC to denote that the Privileged Architecture is at
Release 3.

3.2 Software Detection of the ASE

Software may determine if the SmartMIPS ASE is implemented by checking the state of the SM bit in the Config3
CP0 register.

3.3 Compliance and Subsetting

There are no instruction subsets of the SmartMIPS ASE to the MIPS32 Architecture – all SmartMIPS instructions
must be implemented.

 The SmartMIPS® Application-Specific Extension to the MIPS32® Architecture

34 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

3.4 Overview of the SmartMIPS ASE

The SmartMIPS ASE extends the MIPS32® Architecture with set of new instructions combined with a set of back-
ward-compatible modifications to existing MIPS32 instructions, designed to improve the performance and reduce the
memory consumption of MIPS-based smart card or “smart object” systems. The SmartMIPS ASE contains enhance-
ments in several distinct areas: cryptographic processing, code density, and virtual machine performance.

3.4.1 Support for Cryptographic Algorithms in the SmartMIPS ASE

The SmartMIPS ASE includes a package of extensions to MIPS32 to enhance the performance of cryptographic algo-
rithms. Cryptographic algorithms can be generally divided into two categories - public key algorithms and secret key
algorithms. Secret key algorithms, also known as symmetric algorithms, encrypt and decrypt with the same key, while
public key algorithms operate in terms of key pairs, one for encryption and the other for decryption.

3.4.1.1 Secret Key Cryptography

Secret key algorithms are generally computationally relatively simple and frequently reducible to simple hardware
solutions performing sequences of XORs, rotations, and permutations on blocks of data.

The SmartMIPS ASE contains the following elements for accelerating software implementations of secret key cryp-
tography:

• A partial permutation instruction, capable of permuting 6 bits per instruction.

• A single-instruction bitwise rotate capability.

3.4.1.2 Public Key Cryptography

Public key cryptosystems are mathematically more subtle and computationally more difficult than private-key sys-
tems. While different schemes have different bases in mathematics, they tend to have a common need for integer
computation across very large ranges of values, on the order of 1024 bits. This extended precision arithmetic is often
modular (operating modulo the value range), and in some cases polynomial instead of twos-complement. Research
conducted with industry partners has led us to conclude that accelerating extended-precision modular arithmetic pro-
vides a significant improvement in performance across a range of public key cryptography schemes.

The SmartMIPS ASE contains the following elements for accelerating public key cryptography:

• Additional architecturally visible accumulator state containing extended carry information.

• Instructions to allow the extended carry state to be initialized, extracted, saved, and restored.

• Extension of the definition of the MIPS32 MADDU instruction to generate and use the extended carry state.

• Instructions which allow multiplication and accumulation of polynomial-basis values.

3.4.2 Code Density Optimization

Note: For Release 3 of the MIPS32 Architecture, the microMIPS instruction set is the preferred solution for
small code-sizes. The rest of this section is meant for implementations using Release 2 or Release 1 of the
MIPS32 Architecture.

3.4 Overview of the SmartMIPS ASE

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 35

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

The SmartMIPS ASE is meant to be used with the MIPS16eTM ASE. This ASE is fully documented in Volume IV-a
of the MIPS Architecture reference, and is outside the scope of this document. Relative to the earlier version of
MIPS16, there are enhancements in the following areas:

3.4.2.1 Data Type Conversion

In virtual machines and other software that very frequently handles data elements smaller than a 32-bit word, sign and
zero extension operations must be performed on those data elements before they can be used computationally. In
MIPS16, these operations require relatively large instruction sequences, on the order of 8 bytes per conversion. The
MIPS16e ASE provides a set of specific instructions to perform zero and sign-extension of bytes and 16-bit half-
words, bringing the footprint down to 2 bytes per conversion.

3.4.2.2 Jump Delay Slot Suppression

The MIPS16 ASE preserved the “delay slot” following the jump instructions used for subroutine call and return. The
compiler can frequently, but by no means always, fill these delay slots with a useful instruction. Where it cannot, the
MIPS16 ASE required that a no-op instruction be inserted into the instruction stream, at a cost of 2 bytes of footprint.
The MIPS16e ASE provides variant jump-via-register instructions that suppress these visible delay slots and elimi-
nate the need for those no-ops.

3.4.2.3 Stack Frame Set-up and Tear-down

In generating code compatible with the MIPS Application Binary Interface (ABI) calling conventions, the compiler
must assure that each subroutine set up and tear down a stack frame on which register values are saved and where
local variables can be stored. The process of storing register values and updating the stack pointer on subroutine
entry, and of restoring the values of the registers and the stack pointer on subroutine exit, can consume a significant
amount of code, particularly in system composed of many small subroutines.

While a convention exists for trapping into the operating system from MIPS16 code, and having the operating system
perform the necessary stack frame maintenance, this imposes a significant burden on small operating systems and has
a significant impact on performance. The MIPS16e ISA provides instructions that allow stack frame setup and resto-
ration each to be done in a single compressed instruction.

3.4.3 Other ISA Enhancements

In order to accelerate the interpretation of JavaCard bytecodes and similar interpretive languages, SmartMIPS intro-
duces a scaled, indexed 32-bit load instruction.

 The SmartMIPS® Application-Specific Extension to the MIPS32® Architecture

36 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

3.4.4 Privileged Resource Architecture Enhancements

In addition to an augmented instruction set, SmartMIPS defines an augmented privileged resource architecture with
augmented memory management capabilities.

• True Read-only, Write-only, and Execute-only page protection are supported.1

• 2K or 1K virtual memory pages can be supported.

• A more flexible CP0 Context register is provided to accelerate TLB lookups in small memory systems.1

1 For Release 3 of the MIPS Architecture, this feature is an available option in the standard Privileged Architecture. For Smart-
MIPS implementations, these features are required to be implemented.

3.5 Instruction Bit Encoding

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 37

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

3.5 Instruction Bit Encoding

Table 3.2 through Table 3.11 describe the encoding used for the SmartMIPS ASE. Table 3.1 describes the meaning of
the symbols used in the tables. These tables only list the instruction encodings for the SmartMIPS instructions. See
Volume I-A of this multi-volume set for a full encoding of all instructions.

Table 3.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

δ (Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

β Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Exception.

θ Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, MIPS Technologies will assist the partner in
selecting appropriate encodings if requested by the partner. The partner is not required to consult
with MIPS Technologies when one of these encodings is used. If no instruction is encoded with
this value, executing such an instruction must cause a Reserved Instruction Exception (SPECIAL2
encodings or coprocessor instruction encodings for a coprocessor to which access is allowed) or a
Coprocessor Unusable Exception (coprocessor instruction encodings for a coprocessor to which
access is not allowed).

σ Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding is imple-
mented, it must match the instruction encoding as shown in the table.

ε Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS32 ISA. Software should avoid using these operation or field codes.

Table 3.2 SmartMIPS ASE Encoding of the Opcode Field

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000 SPECIAL δ
1 001

2 010

3 011 SPECIAL2 δ

4 100

5 101

6 110

7 111

 The SmartMIPS® Application-Specific Extension to the MIPS32® Architecture

38 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Table 3.3 SmartMIPS ASE SPECIAL Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 SRL δ SRLV δ
1 001

2 010 MFLO δ MTLO δ

3 011 MULTU δ

4 100

5 101

6 110

7 111

Table 3.4 SmartMIPS ASE SPECIAL2 Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 MADDU δ
1 001 LXS δ
2 010

3 011

4 100

5 101

6 110

7 111

Table 3.5 SmartMIPS ASE SRL Encoding of Shift/Rotate

R bit 21

0 1

SRL ROTR

Table 3.6 SmartMIPS ASE SRLV Encoding of Shift/Rotate

R bit 6

0 1

SRLV ROTRV

Table 3.7 SmartMIPS ASE MFLO Encoding of MFLO/MFLHXU

sa bits 10..6

0b00000 0b00001

MFLO MFLHXU

3.5 Instruction Bit Encoding

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 39

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Table 3.8 SmartMIPS ASE MTLO Encoding of MTLO/MTLHX

sa bits 10..6

0b00000 0b00001

MTLO MTLHX

Table 3.9 SmartMIPS ASE MULTU Encoding of MULTU/MULTP

sa bits 10..6

0b00000 0b10001

MULTU MULTP

Table 3.10 SmartMIPS ASE MADDU Encoding of MADDU/MADDP/PPERM

sa bits 10..6

0b00000 0b10001 0b10010

MADDU MADDP PPERM

Table 3.11 SmartMIPS ASE LXS Encoding of LWXS

sa bits 10..6

0b00001

LWXS

 The SmartMIPS® Application-Specific Extension to the MIPS32® Architecture

40 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Chapter 4

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 41

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

The SmartMIPS® Cryptographic Feature Set

The SmartMIPS ASE includes a set of features that form a cryptographic extension to the MIPS32 Architecture. This
adds the following new architecturally visible state:

• A special accumulator extension register, ACX.

It modifies the following MIPS32/MIPS64 instructions to generate and consume the new ACX state:

• MADDU

• MULTU

It adds the following new instructions to extract and restore the new ACX state:

• MFLHXU

• MTLHX

It adds the following new instructions to implement efficient binary polynomial arithmetic in the multiply/divide unit:

• MADDP

• MULTP

It adds a partial permutation instruction to accelerate bit-permutation of data.

• PPERM

And it adds bitwise rotate instructions that operate on the general register set:

• ROTR

• ROTRV

4.1 The Special Register ACX

The special register ACX contains some number of bits of additional integer precision beyond those contained in the
HI/LO special register pair. The precise number of bits is implementation dependent, but can be trivially determined at
run-time by software. The minimum architectural size of the ACX register is 8 bits. The maximum architectural size
of the ACX register is 64 bits for a MIPS64 processor and 32 bits for a MIPS32 processor. The currently recom-
mended implementation size of the ACX register is 8 bits.

 The SmartMIPS® Cryptographic Feature Set

42 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

4.2 Change to MADDU Semantics

Whereas the MIPS32 MADDU instruction is defined to produce a 64-bit result, the SmartMIPS ASE MADDU
instruction produces a higher-precision result, with the carry out of the HI register propagating into the ACX register.
The behavior of the instruction as seen by the MIPS32 ISA is unchanged.

4.3 Change to MULTU Semantics

The definition of the MIPS32 MULTU instruction is extended to clear the ACX register to all zeroes.

4.4 Possible Changes to other Multiply/Accumulate Semantics

While only MADDU, MULTU, MADDP, and MULTP need affect the ACX register to implement the extended-pre-
cision modular arithmetic algorithms targeted by the ASE, in the interests of consistency and design simplicity, it is
possible that the MADD instruction will also generate ACX bits should the HI register overflow, and that the MULT,
DIV, and DIVU instructions will clear the ACX bits. Code written to the SmartMIPS ASE should make no assump-
tions about the behavior of the ACX bits during the execution of any instruction that writes both the HI and LO spe-
cial registers, other than MULTU, MADDU, MULTP, and MADDP as described in this document.

4.5 New Instructions

4.5.1 MFLHXU

The MFLHXU, or Move-from-LO-HI-ACX-Unsigned instruction, in effect shifts the extended precision accumulator
formed by the ACX, HI, and LO registers to the right by one register position: the LO register is copied into the speci-
fied GPR, the HI register is copied into the LO register, and the ACX register is zero-extended and copied into the HI
register. The instruction is designated as “unsigned” because the ACX bits are zero-extended and not sign-extended
when they are transferred to a HI register of higher precision.

4.5.2 MTLHX

The MTLHXI, or Move-to-LO-HI-ACX instruction, is the inverse operation from MFLHXU. It effectively shifts the
extended-precision accumulator formed by the ACX, HI, and LO registers to the left by one register position: The HI
register is truncated to the width of the ACX register and the remaining lower bits are copied to the ACX register, the
LO register is copied to the HI register, and the specified GPR is copied to the LO register.

4.5.3 MADDP

Binary polynomial addition and multiplication form the basis for an important family of elliptical curve (EC) crypto-
systems. The MADDP instruction performs a polynomial basis multiply of a pair of general registers, and then per-
forms a polynomial basis add of the resulting product to the contents of the HI/LO register pair.

4.5.4 MULTP

The MULTP instruction performs a binary polynomial basis multiply of a pair of general registers, placing the result
in the HI/LO register pair.

4.5 New Instructions

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 43

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

4.5.5 PPERM

The PPERM instruction performs a partial permutation of a value in a general register into the ACX-HI-LO registers.
The ACX-HI-LO registers are shifted left by six bit positions, and the least significant six bits of LO are set to the val-
ues of arbitrary bits in an input register, based on a set of six, 5-bit bit specifiers in the second general-purpose input
register. This allows for an arbitrary permutation of 32 bits of a GPR in 7 instructions: 6 PPERMS and a MFLO or
MFLHX.

4.5.6 ROTR

DES and the candidate AES secret-key block ciphers all require rotations of 32-bit quantities. In the MIPS32 ISA,
this requires a sequence of 3 instructions to perform. The ROTR instruction performs a bitwise rotation of a general
purpose register of up to 31 bits in a single instruction. The definition and encoding of the ROTR instruction in the
SmartMIPS ASE is identical to that of the same instruction in Release 2 of the MIPS Architecture.

4.5.7 ROTRV

The ROTRV instruction performs a variable-length rotation of a general purpose register, with the number of bits to
be rotated determined at run-time by the value of another general purpose register. The definition and encoding of the
ROTRV instruction in the SmartMIPS ASE is identical to that of the same instruction in Release 2 of the MIPS
Architecture.

 The SmartMIPS® Cryptographic Feature Set

44 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Chapter 5

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 45

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Other ISA Elements of the SmartMIPS® ASE

In addition to the cryptography feature set and the enhanced MIPS16 ASE, the SmartMIPS ASE contains the follow-
ing instruction:

• LWXS - Scaled, indexed word load.

5.1 LWXS Instruction

The inner-loop function of interpreters for JavaCard bytecodes and similar interpretive languages requires a dispatch
to a function based on an integer value. The LWXS instruction reduces and accelerates such loops, by integrating a
scaling of an integer operand into a word offset and an address generation based on using the scaled value as an offset
relative to a base register.

Load Word Indexed, Scaled LWXS

46 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Format: LWXS rd, index(base) SmartMIPS

Purpose: Load Word Indexed, Scaled

To load a word from memory as a signed value, using scaled indexed addressing.

Description: GPR[rd] ← memory[GPR[base] + (GPR[index] × 4)]

The contents of GPR index is multiplied by 4 and the result is added to the contents of GPR base to form an effective
address. The contents of the 32-bit word at the memory location specified by the aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and placed in GPR rd.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← (GPR[index]29..0 || 02) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rd] ← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

base index rd
LWXS
00010

LXS
001000

6 5 5 5 5 6

Multiply and Add Polynomial Basis Word to Hi,Lo IMADDP

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 47

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Format: MADDP rs, rt SmartMIPS Crypto

Purpose: Multiply and Add Polynomial Basis Word to Hi,Lo

To multiply two 32-bit binary polynomial values and polynomial-basis add the result to Hi, Lo.

Description: (LO,HI,ACX) ← PolyMult(GPR[rs], GPR[rt]) xor (LO,HI,ACX)

The 32-bit word value in GPR rs is polynomial-basis multiplied by the 32-bit value in GPR rt, treating both operands
as binary polynomial values, to produce a 64-bit result. The product is polynomial-basis added (XORed) to the 64-bit
concatenated value of HI and LO, and the zero-extended result is written back into HI and LO. Although MADDP is
formally defined to operate on special register ACX as well, its value can never be changed by the operation, nor can
its input value affect the result. No arithmetic exception occurs under any circumstances.

Restrictions:

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp ← (HI31..0 || LO31..0) xor PolyMult(GPR[rs]31..0,GPR[rt]31..0)
HI ← sign_extend(temp63..32)
LO ← sign_extend(temp31..0)
ACX ← ACX

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt
0

00000
MADDP

10001
MADDU
000001

6 5 5 5 5 6

Multiply and Add Unsigned Word to Hi,Lo MADDU

48 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Format: MADDU rs, rt SmartMIPS Crypto

Purpose: Multiply and Add Unsigned Word to Hi,Lo

To multiply two unsigned words and add the result to ACX, HI, LO.

Description: (LO,HI,ACX) ← (GPR[rs] × GPR[rt]) + (LO,HI,ACX)

The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as unsigned val-
ues, to produce a 64-bit result. The product is added to the 72-or-more-bit concatenated value of ACX, HI, and LO,
and the carry-extended result is written back into ACX, HI, and LO. No arithmetic exception occurs under any cir-
cumstances.

Restrictions:

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp ← (ACXACXMSB..0 || HI31..0 || LO31..0) + (GPR[rs]31..0 × GPR[rt]31..0)
ACX ← zero_extend(tempACXMSB+64..64)
HI ← sign_extend(temp63..32)
LO ← sign_extend(temp31..0)

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt
0

00000
MADDU

00000
MADDU
000001

6 5 5 5 5 6

Move from Extended Carry, Hi and Lo (Unsigned) IMFLHXU

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 49

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Format: MFLHXU rd SmartMIPS Crypto

Purpose: Move from Extended Carry, Hi and Lo (Unsigned)

Extract extended Hi/Lo state.

Description: GPR[rd] ← LO; LO ← HI; HI ← ACX; ACX ← 0;

The value in special register LO is written to GPR rd. The value in special register HI is then written to special register
LO, the extended accumulator bits ACX are zero-extended and copied to HI, and the extended accumulator bits ACX
are cleared

• The number of ACX extended accumulator bits is implementation dependent, ranging from 8 to 64 bits.

• If 64-bit operations are not available and enabled, at most the least-significant 32 bits of ACX will be copied to
HI, but the whole ACX field will then be cleared.

Restrictions:

None

Operation:

newHI ← zero_extend(ACX)
newLO ← HI
GPR[rd] ← LO
LO ← newLO
HI ← newHI
ACX ← 0

Exceptions:

None

31 26 25 16 15 11 10 6 5 0

SPECIAL
000000

0
00 0000 0000

rd
MFLHXU

00001
MFLO
010010

6 10 5 5 6

Move to Lo, Hi, and Extended Carry MTLHX

50 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Format: MTLHX rs SmartMIPS Crypto

Purpose: Move to Lo, Hi, and Extended Carry

Set extended Hi/Lo state.

Description: ACX ← HI; HI ← LO; LO ← GPR[rs] ;

The value special register HI is written to the extended accumulator bits ACX. The value in special register LO is then
written to special register HI, and the value in GPR rs is written to special register LO. This is the reverse of the oper-
ation of the MFLHXU instruction.

• The number of ACX extended accumulator bits is implementation-dependent, ranging from 8 to 64 bits. If the HI
register contains more significant bits than the number of implemented ACX bits, that information is discarded
without raising an exception.

• If 64-bit operations are not enabled, at most the least-significant 32 bits of HI will be copied to ACX.

Restrictions:

None

Operation:

newLO ← GPR[rs]
newHI ← LO
ACX ← HIACXMSB..0
HI ← newHI
LO ← newLO

Exceptions:

None

31 26 25 21 20 11 10 6 5 0

SPECIAL
000000

rs
0

0 0000 0000 0
MTLHX

00001
MTLO
010011

6 5 10 5 6

Multiply Binary Polynomial Basis Word IMULTP

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 51

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Format: MULTP rs, rt SmartMIPS Crypto

Purpose: Multiply Binary Polynomial Basis Word

To multiply two 32-bit binary polynomial values

Description: (LO, HI) ← BinPolyMult(GPR[rs], GPR[rt])

The 32-bit word value in GPR rt is polynomial-basis multiplied by the 32-bit value in GPR rs, treating both operands
as binary polynomial values, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special
register LO, and the high-order 32-bit word is placed into special register HI. The special register ACX is cleared.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod ← PolyMult(GPR[rs]31..0, GPR[rt]31..0)
LO ← sign_extend(prod31..0)
HI ← sign_extend(prod63..32)
ACX ← 0

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt 0
MULTP
10001

MULTU
011001

6 5 5 5 5 6

Multiply Unsigned Word MULTU

52 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Format: MULTU rs, rt SmartMIPS Crypto

Purpose: Multiply Unsigned Word

To multiply 32-bit unsigned integers

Description: (LO, HI) ← GPR[rs] × GPR[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as unsigned val-
ues, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special register LO, and the
high-order 32-bit word is placed into special register HI. The special register ACX is cleared.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod ← (0 || GPR[rs]31..0) × (0 || GPR[rt]31..0)
LO ← sign_extend(prod31..0)
HI ← sign_extend(prod63..32)
ACX ← 0

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt 0
MULTU
00000

MULTU
011001

6 5 5 5 5 6

Partial Permutation of Word Data into ACX-Hi-Lo Accumulator IPPERM

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 53

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Format: PPERM rs, rt SmartMIPS Crypto

Purpose: Partial Permutation of Word Data into ACX-Hi-Lo Accumulator

Perform a partial permutation of a 32-bit value into the ACX/Hi/Lo registers

Description: (LO, HI, ACX) ← (LO, HI, ACX) << 6 | GPR[rs] bits specified by contents of GPR[rt]

The extended accumulator formed by the ACX, HI, and LO registers is shifted left by six bits, and 32-bit word value
in GPR rt is used as a permutation descriptor to select a set of six bits from GPR rs, to be written into the least signif-
icant six bits of the LO register.

The contents of the rt register are interpreted as follows:

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

TEMP ← ACX(ACXBITS-6)..0 || HI31..26
ACX ← TEMPACXBITS..0
TEMP ← HI25..0 || LO31..26
HI ← sign_extend(TEMP)
TEMP31...6 ← LO25..0
BITSEL ← GPR[rt]29..25
TEMP5 ← GPR[rs]BITSEL
BITSEL ← GPR[rt]24..20
TEMP4 ← GPR[rs]BITSEL
BITSEL ← GPR[rt]19..15
TEMP3 ← GPR[rs]BITSEL
BITSEL ← GPR[rt]14..10
TEMP2 ← GPR[rs]BITSEL
BITSEL ← GPR[rt]9..5
TEMP1 ← GPR[rs]BITSEL
BITSEL ← GPR[rt]4..0
TEMP0 ← GPR[rs]BITSEL
LO ← sign_extend(TEMP)

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt 0
PPERM
10010

MADDU
000001

6 5 5 5 5 6

31 30 29 25 24 20 19 15 14 10 9 5 4 0

0 Source of bit 5 Source of bit 4 Source of bit 3 Source of bit 2 Source of bit 1 Source of bit 0

2 5 5 5 5 5 5

Rotate Word Right ROTR

54 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Format: ROTR rd, rt, sa SmartMIPS Crypto

Purpose: Rotate Word Right

To execute a logical right-rotate of a word by a fixed number of bits

Description: GPR[rd] ← GPR[rt] ↔ (right) sa

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The
bit-rotate amount is specified by sa.

Restrictions:

Operation:

if ((ArchitectureRevision() < 2) and (Config3SM = 0)) then
UNPREDICTABLE

endif
s ← sa
temp ← GPR[rt]s-1..0 || GPR[rt]31..s
GPR[rd] ← temp

Exceptions:

Reserved Instruction

31 26 25 22 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0000
R
1

rt rd sa
SRL

000010

6 4 1 5 5 5 6

Rotate Word Right Variable IROTRV

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 55

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Format: ROTRV rd, rt, rs SmartMIPS Crypto

Purpose: Rotate Word Right Variable

To execute a logical right-rotate of a word by a variable number of bits

Description: GPR[rd] ← GPR[rt] ↔ (right) GPR[rs]

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The
bit-rotate amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

Operation:

if ((ArchitectureRevision() < 2) and (Config3SM = 0)) then
UNPREDICTABLE

endif
s ← GPR[rs]4..0
temp ← GPR[rt]s-1..0 || GPR[rt]31..s
GPR[rd] ← temp

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 7 6 5 0

SPECIAL
000000

rs rt rd 0000
R
1

SRLV
000110

6 5 5 5 4 1 6

Rotate Word Right Variable ROTRV

56 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Chapter 6

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 57

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

The SmartMIPS® Release 3 Privileged Resource
Architecture

6.1 Introduction

The MIPS Privileged Resource Architecture (PRA) defines a set of environments and capabilities on which the
Instruction Set Architecture operates. This includes definitions of the programming interface and operation of the
system coprocessor, CP0. SmartMIPS defines extensions to the MIPS PRA that are desirable in a smart card environ-
ment. This document describes these extensions. It is not intended to be a stand-alone PRA specification, and must be
read in the context of the MIPS Architecture specification.

This chapter describes how the SmartMIPS ASE interacts with the Release 3 of the MIPS PRA.

An Appendix describes how the SmartMIPS ASE interacts with Release 2 and Release 1 of the MIPS PRA.

6.2 Overview

The SmartMIPS PRA extends the standard MIPS PRA in these specific regards:

• Virtual Memory Page Size

• Detection of SmartMIPS Features

The minimum virtual memory page size supported by the standard MIPS PRA is 4K (4096) bytes. SmartMIPS allows
for the TLB to be configured to optimally support 4K, 2K, and 1K virtual memory pages, and to accelerate lookups of
multilevel page tables.

The presence of SmartMIPS features is indicated in the CP0 Config3SM register field.

6.3 Compliance

Features described as Required in this document are required of all processors claiming compatibility with Smart-
MIPS. Any features described as Recommended should be implemented unless there is an overriding need not to do
so. Features described as Optional provide a standardization of features that may or may not be appropriate for a par-
ticular SmartMIPS processor implementation. If such a feature is implemented, it must be implemented as described
in this document if a processor is to claim compatibility with SmartMIPS.

In some cases, there are features within features that have different levels of compliance. For example, if there is an
Optional field within a Required register, this means that the register must be implemented, but the field may or may
not be, depending on the needs of the implementation. Similarly, if there is a Required field within an Optional regis-
ter, this means that if the register is implemented, it must have the specified field.

 The SmartMIPS® Release 3 Privileged Resource Architecture

58 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

6.4 Interaction between the SmartMIPS ASE and Release 2 of the MIPS32
Architecture

Some features that are included in the SmartMIPS ASE (e.g., 1KB page support) were implemented in Release 2 of
the MIPS32 Architecture in such a way that there is conflict between the specifications. In such a case, the conflict is
resolved in favor of the SmartMIPS ASE specification. That is, an implementation of the SmartMIPS ASE in a pro-
cessor that also implements Release 2 of the MIPS32 Architecture obeys the rules of the SmartMIPS ASE whenever
the specifications have a conflict.

For the 1KB page support, this means the Release 2 definition of that feature must not be implemented (Config3SP =
0) in an device that also implements SmartMIPS.

6.5 The SmartMIPS System Coprocessor

Except as defined below, the SmartMIPS system coprocessor interface and functionality is identical to MIPS32.

6.5.1 CP0 Register Summary

Table 6.1 lists the CP0 registers affected by the SmartMIPS specification, in numerical order. The individual registers
are described later in this document. Otherwise the definition reverts to the standard MIPS PRA specification. The Sel
column indicates the value to be used in the field of the same name in the MFC0 and MTC0 instructions.

6.6 Virtual Memory

6.6.1 TLB-Based Virtual Address Translation

This section describes the SmartMIPS changes and additions to the standard MIPS PRA TLB-based virtual address
translation mechanism.

6.6.1.1 Address Translation

The address translation process in SmartMIPS varies from the standard MIPS PRA address translation process in this
regard:

• The number and position of the bits that form the virtual page number, physical page frame number, and page
mask may vary from the standard MIPS PRA definition and provide 4K, 2K or 1K page granularity, depending
on the state of the PageGrain register.

The modified TLB lookup process can be described as follows:

Table 6.1 SmartMIPS Changes to Coprocessor 0 Registers in Numerical Order

Register
Number Sel Register Name Modification Reference

Compliance
Level

5 0 PageMask Qualified by PageGrain register. Section 6.7.1 Required

5 1 PageGrain Controls granularity of virtual pages in EntryLo,
PageMask, and EntryHi registers.

Section 6.7.2 Required

10 0 EntryHi Qualified by PageGrain register. Section 6.7.3 Required

16 2 Config3 Identifies SmartMIPS feature set. Section 6.7.4 Required

6.6 Virtual Memory

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 59

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

found ← 0
for i in 0...TLBEntries-1

if((TLB[i]VPN2 and not (TLB[i]Mask)) = (va31..11 and not (TLB[i]Mask))) and
 (TLB[i]G or (TLB[i]ASID = EntryHiASID)) then

EvenOddBit selects between even and odd halves of the TLB as
a function of the page size in the matching TLB entry
effective_mask = TLB[i]Mask OR (0 || PageGrainMask)
case effective_mask

000000000000002: EvenOddBit ← 10
000000000000012: EvenOddBit ← 11
000000000000112: EvenOddBit ← 12
000000000011112: EvenOddBit ← 14
000000001111112: EvenOddBit ← 16
000000111111112: EvenOddBit ← 18
000011111111112: EvenOddBit ← 20
001111111111112: EvenOddBit ← 22
111111111111112: EvenOddBit ← 24
otherwise: UNDEFINED

endcase
if vaEvenOddBit = 0 then

pfn ← TLB[i]PFN0
v ← TLB[i]V0
c ← TLB[i]C0
d ← TLB[i]D0
ri ← TLB[i]RI0
xi ← TLB[i]XI0

else
pfn ← TLB[i]PFN1
v ← TLB[i]V1
c ← TLB[i]C1
d ← TLB[i]D1
ri ← TLB[i]RI1
xi ← TLB[i]XI1

endif
if v = 0 then

SignalException(TLBInvalid, reftype)
endif
if (ri = 1) and (reftype = load) then

if (xi = 0) and (IsPCRelativeLoad(PC))
PC relative loads are allowed where execute is allowed

else
SignalException(TLBInvalid, reftype)

endif
endif
if (xi = 1) and (reftype = fetch) then

SignalException(TLBInvalid, reftype)
endif
if (d = 0) and (reftype = store) then

SignalException(TLBModified)
endif
case PageGrainMask

002: pa_pfn ← 002 || pfn
012: pa_pfn ← 02 || pfn || 02
112: pa_pfn ← pfn || 002

endcase
pa_pfn(PABITS-1)-10..0 corresponds to paPABITS-1..10
pa ← pa_pfn(PABITS-1)-10..EvenOddBit-10 || vaEvenOddBit-1..0
found ← 1

 The SmartMIPS® Release 3 Privileged Resource Architecture

60 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

break
endif

endfor
if found = 0 then

SignalException(TLBMiss, reftype)
endif

Table 6.2 shows how the physical address is generated as a function of the page size of the TLB entry matching the
virtual address. The “Even/Odd Select” column of the table indicates which virtual address bit is used to select
between the even (EntryLo0) or odd (EntryLo1) entry in the matching TLB entry. The “PA generated from” column
specifies how the physical address is generated from the selected PFN and the offset-in-page bits in the virtual
address. PFN is the physical page number as loaded into the TLB from the EntryLo0 or EntryLo1 registers, and has the
bit range PFN(PABITS-1)-12..0, corresponding to PAPABITS-1..12, PAPABITS-2..11, or PAPABITS-3..10, depending on the
value of PageGrainMask. Note that there are multiple combinations of PageMask and PageGrain that result in the
same effective virtual page size.

The standard MIPS PRA might support page sizes larger than listed in Table 6.2. Those larger page sizes are allowed
on SmartMIPS implementations as long as they don’t interfere with support for 1KB, 2KB and 4KB pages.

Table 6.2 Physical Address Generation

Page Size
Even/Odd

Select
PageGrain
Mask value PA(PABITS-1)..0 generated from

1K Bytes VA10 002 002 || PFN(PABITS-1)-12..0 || VA09..0

2K Bytes VA11 002 002 || PFN(PABITS-1)-12..1 || VA10..0

012 02 || PFN(PABITS-1)-12..0 || VA10..0

4K Bytes VA12 002 002 || PFN(PABITS-1)-12..2 || VA11..0

012 02 || PFN(PABITS-1)-12..1 || VA11..0

112 PFN(PABITS-1)-12..0 || VA11..0

16K Bytes VA14 002 002 || PFN(PABITS-1)-12..4 || VA13..0

012 02 || PFN(PABITS-1)-12..3 || VA13..0

112 PFN(PABITS-1)-12..2 || VA13..0

64K Bytes VA16 002 002 || PFN(PABITS-1)-12..6 || VA15..0

012 02 || PFN(PABITS-1)-12..5 || VA15..0

112 PFN(PABITS-1)-12..4 || VA15..0

256K Bytes VA18 002 002 || PFN(PABITS-1)-12..8 || VA17..0

012 02 || PFN(PABITS-1)-12..7 || VA17..0

112 PFN(PABITS-1)-12..6 || VA17..0

1M Bytes VA20 002 002 || PFN(PABITS-1)-12..10 || VA19..0

012 02 || PFN(PABITS-1)-12..9 || VA19..0

112 PFN(PABITS-1)-12..8 || VA19..0

6.6 Virtual Memory

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 61

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

6.6.2 General Exception Processing

The SmartMIPS ASE modifies the exception processing in the following ways:

• The EntryHi contents varies according to the page granularity specified by the PageGrain register.

6.6.3 TLB Refill Exception

As in the standard MIPS PRA, a TLB refill exception occurs in a TLB-based MMU when no TLB entry matches a
reference to a mapped address space and the EXL bit is zero in the Status register. SmartMIPS CPUs can differ from
the standard MIPS PRA in the information provided on a TLB Refill exception in the EntryHi registers, depending on
the page granularity supported.

6.6.4 TLB Invalid Exception

As in standard MIPS PRA, a TLB invalid exception occurs when a TLB entry matches a reference to a mapped
address space, but the matched entry has the V (valid) bit off. SmartMIPS can differ from the standard MIPS PRA in
the information provided on a TLB Invalid exception in the EntryHi register.

4M Bytes VA22 002 002 || PFN(PABITS-1)-12..12 || VA21..0

012 02 || PFN(PABITS-1)-12..11 || VA21..0

112 PFN(PABITS-1)-12..10 || VA21..0

16M Bytes VA24 112 PFN(PABITS-1)-12..12 || VA23..0

Table 6.3 TLB Refill Exception State Saved in Addition to the Cause Register

Register State Value

BadVAddr Failing address

EntryHi Bits 31:13 contain VA31:13 of the failing address. Bits 12:11 contain VA12:11 ANDed with the compliment

(logical negation) of PageGrainMask; ASID field contains ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 6.4 TLB Invalid Exception State Saved in Addition to the Cause Register

Register State Value

BadVAddr Failing address

EntryHi Bits 31:13 contain VA31:13 of the failing address. Bits 12:11 contain VA12:11 ANDed with the compliment

(logical negation) of PageGrainMask; ASID field contains ASID of the invalid reference.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 6.2 Physical Address Generation

Page Size
Even/Odd

Select
PageGrain
Mask value PA(PABITS-1)..0 generated from

 The SmartMIPS® Release 3 Privileged Resource Architecture

62 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

6.6.5 TLB Modified Exception

As in standard MIPS PRA, TLB modified exception occurs on a store reference to a mapped address when the match-
ing TLB entry is valid, but the entry’s D bit is zero, indicating that the page is not writable. SmartMIPS CPUs can dif-
fer from the standard MIPS PRA in the information provided on a TLB Refill exception in the EntryHi register.

6.7 CP0 Registers

The CP0 registers provide the interface between the ISA and the Privileged Resource Architecture. Those CP0 regis-
ters that are extended or redefined for SmartMIPS relative to the MIPS Privileged Architecture reference are dis-
cussed below, with the registers presented in numerical order, first by register number, then by select field number.

6.7.1 PageMask Register (CP0 Register 5, Select 0)

Compliance Level: PageMask register modifications are Required for SmartMIPS MMUs.

As in the standard MIPS PRA, the PageMask register is a read/write register used for reading from and writing to the
TLB. SmartMIPS allows implementation of page sizes smaller than 4K bytes, and the PageMask register must be
extended to accommodate them, as shown in Table 6.7. To assure backward compatibility with the standard MIPS
PRA, the Mask field extension bits 12 ad 11 can be inhibited and overridden by the corresponding bits of the
PageGrain register. Inhibited PageMask bits are treated as 1 bits for the purposes of virtual address translation - the
corresponding virtual address bits are not used for TLB match comparisons - but read as zeroes to software to pre-
serve backward compatibility.

Figure 6.1 shows the format of the PageMask register; Table 6.6 describes the PageMask register fields.

Figure 6.1 SmartMIPS PageMask Register Format

Table 6.5 TLB Modified Exception State Saved in Addition to the Cause Register

Register State Value

BadVAddr Failing address

EntryHi Bits 31:13 contain VA31:13 of the failing address. Bits 12:11 contain VA12:11 ANDed with the compliment

(logical negation) of PageGrainMask; ASID field contains ASID of the modifying reference.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

31 25 24 11 10 0

0 Mask 0

6.7 CP0 Registers

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 63

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

The columns marked with an asterix (*) are those which can be disabled and overridden by the PageGrain register.

 It is implementation-dependent how many of the encodings described in Table 6.7 are implemented. All processors
must implement the 4KB page size, and the implemented Mask bits must span the contiguous range of values from
4KB to the smallest page granularity that can be specified by the implemented PageGrain register. If a particular page
size encoding is not implemented by a processor, a read of the PageMask register must return zeros in all bits that
correspond to encodings that are not implemented. Software can determine which page sizes are supported by writing
the encoding for a 16MB page to the PageMask register, then examine the value returned from a read of the
PageMask register. If a pair of bits reads back as ones, the processor implements that page size. The operation of the
processor is UNDEFINED if software loads the PageMask register with a value other than one of those listed in
Table 6.7.

The standard MIPS PRA might support page sizes larger than listed in Table 6.7. Those larger page sizes are allowed
on SmartMIPS implementations as long as they don’t interfere with support for 1KB, 2KB and 4KB pages.

Table 6.6 PageMask Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

Mask 24:11 The Mask field is a bit mask in which a “1” bit indicates
that the corresponding bit of the virtual address should not
participate in the TLB match.

Bits 12 and 11 of the Mask field can be overridden by the
Mask field of the PageGrain register: If set in the
PageGrain register, the corresponding bit in the
PageMask register is unwritable and reads as a zero to
software, but the corresponding bit is excluded from
address comparison as if it were set in the PageMask
Mask field.

R/W 0 for bits
12..1; Unde-
fined for bits
24..13

Required

0 31:25,
10:0

Must be written as zero; return zero on read. 0 0 Reserved

Table 6.7 Values for the Mask Field of the PageMask Register

Page Size

Bit

24 23 22 21 20 19 18 17 16 15 14 13 12* 11*

1 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 1

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 1 1

16 KBytes 0 0 0 0 0 0 0 0 0 0 1 1 1 1

64 KBytes 0 0 0 0 0 0 0 0 1 1 1 1 1 1

256 KBytes 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 MByte 0 0 0 0 1 1 1 1 1 1 1 1 1 1

4 MByte 0 0 1 1 1 1 1 1 1 1 1 1 1 1

16 Mbyte 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 The SmartMIPS® Release 3 Privileged Resource Architecture

64 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

The value of the PageMask register is UNPREDICTABLE following a modification of the contents of the
PageGrain register.

6.7.2 PageGrain Register (CP0 Register 5, Select 1)

Compliance Level: Required for SmartMIPS MMUs. Optional for Release 2 (and subsequent) of the standard MIPS
PRA.

The PageGrain register is a read/write register used to configure the SmartMIPS MMU to operate on pages smaller
than 4K bytes. It’s value is used when reading from and writing to the TLB. SmartMIPS allows implementation of
page sizes smaller than 4K bytes, and in those implementations, the PageMask register must be extended to accom-
modate them, as shown in Table 6.7. The PageGrain register also contains enable bits for the read-inhibit (RI) and
execute-inhibit (XI) bits of the EntryLo registers.

It is not required that the contents of the PageGrain register be reflected in the contents of the TLB. Therefore, the
TLB must be flushed before any change to the PageGrain register is made. The operation of the processor is UNDE-
FINED if software modifies any field of the PageGrain register while valid entries are present in the TLB.

Figure 6.2 shows the format of the PageGrain register; Table 6.6 describes the PageGrain register fields.

Figure 6.2 SmartMIPS PageGrain Register Format
31 30 29 13 12 11 10 8 7 0

RIE XIE 0 Mask 111 0

Table 6.8 SmartMIPS PageGrain Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

RIE 31 Read Inhibit Enable. If this bit is set, the RI bit of the EntryLo0
and EntryLo1 registers is enabled. If the bit is clear, the RI bit is
disabled and not writable by software.

R/W 0 Required

XIE 30 Execute Inhibit Enable. If this bit is set, the XI bit of the
EntryLo0 and EntryLo1 registers is enabled. If the bit is clear,
the XI bit is disabled and not writable by software.

R/W 0 Required

6.7 CP0 Registers

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 65

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

It is not required that all bits of the PageGrain Mask field be fully implemented. Unimplemented low-order bits must
be read-only, and must read and function as having a value of 1. Unimplemented high-order bits must read and func-
tion as having the same value as the highest-order implemented bit. Table 6.9 shows some the read/write and func-
tional behavior of the possible SmartMIPS PageGrain subsets.

Mask 12:11 Determines whether the corresponding bits of a virtual address
are to be used for address translation purposes. This affects the
behavior of the EntryLo0/EntryLo1, EntryHi, and PageMask
registers according to the following scheme:

R/W 1 1 Required

0 0 Bits 12 and 11 of PageMask and EntryHi are R/W to
software and used in address translation. PFN field of
EntryLo0/EntryLo1 is treated as PAPABITS-3..10

0 1 Bit 12 of PageMask and EntryHi is R/W to software
and used in address translation. Bit 11 of PageMask
and EntryHi reads as zero, and is not used in address
translation.
PFN field of EntryLo0/EntryLo1 is treated as
PAPABITS-2..11

1 1 Bits 12 and 11 of PageMask and EntryHi read as
zero, and are not used in address translation. PFN
field of EntryLo0/EntryLo1 is treated as
PAPABITS-1..12. In this setting, virtual address transla-

tion is identical to that of the standard MIPS PRA.

1 0 UNDEFINED

1 10:8 Reserved bits for future Mask expansion. Must be written as
one, return one on read.

0 29:13,
7:0

Must be written as zero; return zero on read. 0 0 Reserved

Table 6.9 PageGrain Implementation Subset Behavior

Subset
Mask Value

Written
Mask Value Read

Back
Page

Granularity

2K Byte Page
Grain but not 1K
Byte Page Grain

0 0 0 1 2K Bytes

0 1 0 1 2K Bytes

1 0 1 1 4K Bytes

1 1 1 1 4K Bytes

1K Byte Page
Grain but not 2K
Byte Page Grain

0 0 0 0 1K Bytes

0 1 1 1 4K Bytes

1 0 0 0 1K Bytes

1 1 1 1 4K Bytes

Table 6.8 SmartMIPS PageGrain Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

 The SmartMIPS® Release 3 Privileged Resource Architecture

66 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

6.7.3 EntryHi Register (CP0 Register 10, Select 0

Compliance Level: EntryHi register modifications are Required for SmartMIPS MMUs. Modifications optional in
Release 2 (and subsequent) of the standard MIPS PRA.

As in the standard MIPS PRA, the EntryHi register contains the virtual address match information used for TLB read,
write, and access operations.

For SmartMIPS implementations supporting pages sizes smaller than 4K, the VPN2 field of EntryHi must be extended
to allow for the greater number of VPNs in an address space divided into smaller pages. A similar optional feature
was added to Release 2 (and subsequent) of the standard MIPS Privileged Resource Architecture.

Figure 6.3 shows the format of the modified SmartMIPS EntryHi register; Table 6.10 describes the EntryHi register
fields.

Figure 6.3 SmartMIPS EntryHi Register Format

The value of the EntryHi register is UNPREDICTABLE following a modification of the contents of the PageGrain
register.

6.7.4 Configuration Register 3 (CP0 Register 16, Select 3)

Compliance Level: Required for SmartMIPS.

The Config3 register is fully defined in Volume III of this multi-volume set. Bit 1 (named SM) of the Config3 register
denotes the presence of the SmartMIPS ASE.

31 11 10 8 7 0

VPN2 0 ASID

Table 6.10 EntryHi Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

VPN2 31:11 VA31:11 of the virtual address (virtual page number / 2).

This field is written by hardware on a TLB exception or
on a TLB read, and is written by software before a TLB
write. Bits 12 and 11 can take a non-zero value only if
the corresponding bits of the PageGrain register are
zeroes.

R/W 0 for bits 12..1;
Undefined for
bits 31..13

Required

ASID 7:0 ASID. Unchanged from the standard MIPS PRA R/W Undefined Required

0 10:8 Must be written as zero; returns zero on read. 0 0 Reserved

Appendix A

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 67

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

The SmartMIPS® Release 2 Privileged Resource
Architecture

A.1 Introduction

This appendix describes how the SmartMIPS ASE interacts with the older Release 2 and Release 1 of the
MIPS PRA.

The MIPS Privileged Resource Architecture (PRA) defines a set of environments and capabilities on which the
Instruction Set Architecture operates. This includes definitions of the programming interface and operation of the
system coprocessor, CP0. SmartMIPS defines extensions to the MIPS PRA that are desirable in a smart card environ-
ment. This document describes these extensions. It is not intended to be a stand-alone PRA specification, and must be
read in the context of the MIPS Architecture specification.

A.2 Overview

The SmartMIPS PRA extends the standard MIPS PRA in these specific regards:

• Protection of Virtual Memory Pages

• Virtual Memory Page Size

• Increase the usability of the Context Register as a pointer to Page Tables

• Detection of SmartMIPS Features

The standard MIPS PRA provides for Virtual memory pages to be invalid, readable and executable, or readable, exe-
cutable, and writable. SmartMIPS extends this to allow true read-only, execute-only, and write-only pages.

The minimum virtual memory page size supported by the standard MIPS PRA is 4K (4096) bytes. SmartMIPS allows
for the TLB to be configured to optimally support 4K, 2K, and 1K virtual memory pages, and to accelerate lookups of
multilevel page tables.

The presence of SmartMIPS features is indicated in the CP0 Config3SM register field.

A.3 Compliance

Features described as Required in this document are required of all processors claiming compatibility with Smart-
MIPS. Any features described as Recommended should be implemented unless there is an overriding need not to do
so. Features described as Optional provide a standardization of features that may or may not be appropriate for a par-
ticular SmartMIPS processor implementation. If such a feature is implemented, it must be implemented as described
in this document if a processor is to claim compatibility with SmartMIPS.

 The SmartMIPS® Release 2 Privileged Resource Architecture

68 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

In some cases, there are features within features that have different levels of compliance. For example, if there is an
Optional field within a Required register, this means that the register must be implemented, but the field may or may
not be, depending on the needs of the implementation. Similarly, if there is a Required field within an Optional regis-
ter, this means that if the register is implemented, it must have the specified field.

A.4 Interaction between the SmartMIPS ASE and Release 2 of the MIPS32
Architecture

Some features that are included in the SmartMIPS ASE (e.g., the ROTR and ROTRV) were subsequently added to
Release 2 of the MIPS32 Architecture. In such cases, the features are implemented identically.

Some features that are included in the SmartMIPS ASE (e.g., 1KB page support) were implemented in Release 2 of
the MIPS32 Architecture in such a way that there is conflict between the specifications. In such a case, the conflict is
resolved in favor of the SmartMIPS ASE specification. That is, an implementation of the SmartMIPS ASE in a pro-
cessor that also implements Release 2 of the MIPS32 Architecture obeys the rules of the SmartMIPS ASE whenever
the specifications have a conflict.

For the 1KB page support, this means the Release 2 definition of that feature must not be implemented (Config3SP =
0) in an device that also implements SmartMIPS.

A.5 The SmartMIPS System Coprocessor

Except as defined below, the SmartMIPS system coprocessor interface and functionality is identical to MIPS32.

A.5.1 CP0 Register Summary

Table A.1 lists the CP0 registers affected by the SmartMIPS specification, in numerical order. The individual registers
are described later in this document. Otherwise the definition reverts to the standard MIPS PRA specification. The Sel
column indicates the value to be used in the field of the same name in the MFC0 and MTC0 instructions.

Table A.1 SmartMIPS Changes to Coprocessor 0 Registers in Numerical Order

Register
Number Sel Register Name Modification Reference

Compliance
Level

2 0 EntryLo0 Two additional bits per page to provide greater vari-
ety of access modes. PFN field definition modified
by PageGrain register.

Section A.7.1 Required

3 0 EntryLo1 Two additional bits per page to provide greater vari-
ety of access modes.PFN field definition modified by
PageGrain register.

Section A.7.1 Required

4 0 Context Layout controlled by ContextConfig. Only applies to
PRA Release 2 and older.

Section A.7.2 Required

4 1 ContextConfig New Register. Controls layout of Context register.
Only applies to PRA Release 2 and older.

Section A.7.3 Required

5 0 PageMask Qualified by PageGrain register. Section A.7.4 Required

5 1 PageGrain New register. Controls granularity of virtual pages in
EntryLo, PageMask, and EntryHi registers.

Section A.7.5 Required

10 0 EntryHi Qualified by PageGrain register. Section A.7.6 Required

A.6 Virtual Memory

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 69

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

A.6 Virtual Memory

A.6.1 TLB-Based Virtual Address Translation

This section describes the SmartMIPS changes and additions to the standard MIPS PRA TLB-based virtual address
translation mechanism.

A.6.1.1 TLB Organization

SmartMIPS extends the TLB organization defined by the standard MIPS Privileged Resource Architecture. The size
of the field containing the virtual page number in the comparison section must accommodate a wider range of virtual
page sizes. In all profiles, the translation section is augmented by two additional bits, RI (Read Inhibit) and XI (Exe-
cute Inhibit), which can be thought of as qualifiers for the existing V (Valid) bit. There are still two entries in the
translation section for each TLB entry, because each TLB entry maps an aligned pair of virtual pages, and the pair of
physical translation entries corresponds to the even and odd pages of the pair. Figure A.1 shows the logical arrange-
ment of a TLB entry.

Figure A.1 Contents of a TLB Entry

The fields of the TLB entry still correspond exactly to the fields in the CP0 PageMask, EntryHi, EntryLo0 and
EntryLo1 registers. The even page entries in the TLB (e.g., PFN0) come from EntryLo0. Similarly, odd page entries
come from EntryLo1.

A.6.1.2 Address Translation

The address translation process in SmartMIPS varies from the standard MIPS PRA address translation process in two
specific regards:

• The number and position of the bits that form the virtual page number, physical page frame number, and page
mask may vary from the standard MIPS PRA definition and provide 4K, 2K or 1K page granularity, depending
on the state of the PageGrain register.

• The RI and XI bits serve to inhibit the V (Valid) bit for Read and Instruction Fetch accesses respectively. Fetch-
ing instructions from a page with the XI bit set will generate a TLB Invalid exception even if the V bit is set.
Similarly, attempting to load data from a page with the RI bit set will generate a TLB Invalid exception even if

16 2 Config3 Identifies SmartMIPS feature set. Section A.7.7 Required

Table A.1 SmartMIPS Changes to Coprocessor 0 Registers in Numerical Order

Register
Number Sel Register Name Modification Reference

Compliance
Level

PFN0 C0 D0 V0

G ASIDVPN2

PageMask

XI0

PFN1 D1 V1RI1 XI1C1

RI0

 The SmartMIPS® Release 2 Privileged Resource Architecture

70 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

the V bit is set. The set of the RI, XI, D, and V bits allows for any combination of read/write/execute protections
to be enforced by hardware.

The modified TLB lookup process can be described as follows:
found ← 0
for i in 0...TLBEntries-1

if((TLB[i]VPN2 and not (TLB[i]Mask)) = (va31..11 and not (TLB[i]Mask))) and
 (TLB[i]G or (TLB[i]ASID = EntryHiASID)) then

EvenOddBit selects between even and odd halves of the TLB as
a function of the page size in the matching TLB entry
effective_mask = TLB[i]Mask OR (0 || PageGrainMask)
case effective_mask

000000000000002: EvenOddBit ← 10
000000000000012: EvenOddBit ← 11
000000000000112: EvenOddBit ← 12
000000000011112: EvenOddBit ← 14
000000001111112: EvenOddBit ← 16
000000111111112: EvenOddBit ← 18
000011111111112: EvenOddBit ← 20
001111111111112: EvenOddBit ← 22
111111111111112: EvenOddBit ← 24
otherwise: UNDEFINED

endcase
if vaEvenOddBit = 0 then

pfn ← TLB[i]PFN0
v ← TLB[i]V0
c ← TLB[i]C0
d ← TLB[i]D0
ri ← TLB[i]RI0
xi ← TLB[i]XI0

else
pfn ← TLB[i]PFN1
v ← TLB[i]V1
c ← TLB[i]C1
d ← TLB[i]D1
ri ← TLB[i]RI1
xi ← TLB[i]XI1

endif
if v = 0 then

SignalException(TLBInvalid, reftype)
endif
if (ri = 1) and (reftype = load) then

if (xi = 0) and (IsPCRelativeLoad(PC))
PC relative loads are allowed where execute is allowed

else
SignalException(TLBInvalid, reftype)

endif
endif
if (xi = 1) and (reftype = fetch) then

SignalException(TLBInvalid, reftype)
endif
if (d = 0) and (reftype = store) then

SignalException(TLBModified)
endif
case PageGrainMask

002: pa_pfn ← 002 || pfn
012: pa_pfn ← 02 || pfn || 02

A.6 Virtual Memory

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 71

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

112: pa_pfn ← pfn || 002
endcase
pa_pfn(PABITS-1)-10..0 corresponds to paPABITS-1..10
pa ← pa_pfn(PABITS-1)-10..EvenOddBit-10 || vaEvenOddBit-1..0
found ← 1
break

endif
endfor
if found = 0 then

SignalException(TLBMiss, reftype)
endif

Table A.2 shows how the physical address is generated as a function of the page size of the TLB entry matching the
virtual address. The “Even/Odd Select” column of the table indicates which virtual address bit is used to select
between the even (EntryLo0) or odd (EntryLo1) entry in the matching TLB entry. The “PA generated from” column
specifies how the physical address is generated from the selected PFN and the offset-in-page bits in the virtual
address. PFN is the physical page number as loaded into the TLB from the EntryLo0 or EntryLo1 registers, and has the
bit range PFN(PABITS-1)-12..0, corresponding to PAPABITS-1..12, PAPABITS-2..11, or PAPABITS-3..10, depending on the
value of PageGrainMask. Note that there are multiple combinations of PageMask and PageGrain that result in the
same effective virtual page size.

Table A.2 Physical Address Generation

Page Size
Even/Odd

Select
PageGrain
Mask value PA(PABITS-1)..0 generated from

1K Bytes VA10 002 002 || PFN(PABITS-1)-12..0 || VA09..0

2K Bytes VA11 002 002 || PFN(PABITS-1)-12..1 || VA10..0

012 02 || PFN(PABITS-1)-12..0 || VA10..0

4K Bytes VA12 002 002 || PFN(PABITS-1)-12..2 || VA11..0

012 02 || PFN(PABITS-1)-12..1 || VA11..0

112 PFN(PABITS-1)-12..0 || VA11..0

16K Bytes VA14 002 002 || PFN(PABITS-1)-12..4 || VA13..0

012 02 || PFN(PABITS-1)-12..3 || VA13..0

112 PFN(PABITS-1)-12..2 || VA13..0

64K Bytes VA16 002 002 || PFN(PABITS-1)-12..6 || VA15..0

012 02 || PFN(PABITS-1)-12..5 || VA15..0

112 PFN(PABITS-1)-12..4 || VA15..0

256K Bytes VA18 002 002 || PFN(PABITS-1)-12..8 || VA17..0

012 02 || PFN(PABITS-1)-12..7 || VA17..0

112 PFN(PABITS-1)-12..6 || VA17..0

1M Bytes VA20 002 002 || PFN(PABITS-1)-12..10 || VA19..0

012 02 || PFN(PABITS-1)-12..9 || VA19..0

112 PFN(PABITS-1)-12..8 || VA19..0

 The SmartMIPS® Release 2 Privileged Resource Architecture

72 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

A.6.2 General Exception Processing

The SmartMIPS ASE modifies the exception processing in the following ways:

• TLB Refill, TLB Invalid, and TLB Modified exceptions, where new qualifying conditions exist for virtual pages
to be considered to be valid.

• The setup of the Context register is now configurable by the ContextConfig register.

• The EntryHi contents varies according to the page granularity specified by the PageGrain register.

A.6.3 TLB Refill Exception

As in the standard MIPS PRA, a TLB refill exception occurs in a TLB-based MMU when no TLB entry matches a
reference to a mapped address space and the EXL bit is zero in the Status register. SmartMIPS CPUs can differ from
the standard MIPS PRA in the information provided on a TLB Refill exception in the Context and EntryHi registers,
depending on the Context register configuration and the page granularity supported.

A.6.4 TLB Invalid Exception

As in standard MIPS PRA, a TLB invalid exception occurs when a TLB entry matches a reference to a mapped
address space, but the matched entry has the V (valid) bit off. On a SmartMIPS CPU, however, if a valid, matching
TLB entry is found with the RI (Read Inhibit) set on a read reference, or with XI (Execute Inhibit) set on an instruc-
tion fetch reference, a TLB Invalid exception will occur despite the presence of the valid bit. MIPS16 PC-relative

4M Bytes VA22 002 002 || PFN(PABITS-1)-12..12 || VA21..0

012 02 || PFN(PABITS-1)-12..11 || VA21..0

112 PFN(PABITS-1)-12..10 || VA21..0

16M Bytes VA24 112 PFN(PABITS-1)-12..12 || VA23..0

Table A.3 TLB Refill Exception State Saved in Addition to the Cause Register

Register State Value

BadVAddr Failing address

Context The bits of the Context register corresponding to the set bits of the VirtualIndex field of the ContextConfig
register are loaded with the high-order bits of the virtual address that missed.

EntryHi Bits 31:13 contain VA31:13 of the failing address. Bits 12:11 contain VA12:11 ANDed with the compliment

(logical negation) of PageGrainMask; ASID field contains ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table A.2 Physical Address Generation

Page Size
Even/Odd

Select
PageGrain
Mask value PA(PABITS-1)..0 generated from

A.7 CP0 Registers

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 73

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

loads are a special case, and are not affected by the RI bit. In addition, SmartMIPS can differ fro the standard MIPS
PRA in the information provided on a TLB Invalid exception in the Context and EntryHi registers.

A.6.5 TLB Modified Exception

As in standard MIPS PRA, TLB modified exception occurs on a store reference to a mapped address when the match-
ing TLB entry is valid, but the entry’s D bit is zero, indicating that the page is not writable. SmartMIPS CPUs can dif-
fer from the standard MIPS PRA in the information provided on a TLB Refill exception in the Context and EntryHi
registers.

A.7 CP0 Registers

The CP0 registers provide the interface between the ISA and the Privileged Resource Architecture. Those CP0 regis-
ters that are extended or redefined for SmartMIPS relative to the MIPS Privileged Architecture reference are dis-
cussed below, with the registers presented in numerical order, first by register number, then by select field number.

A.7.1 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

Compliance Level: EntryLo0 modifications are Required for a SmartMIPS MMU.

Compliance Level: EntryLo1 modifications are Required for a SmartMIPS MMU.

As in the standard MIPS PRA, the pair of EntryLo registers act as the interface between the TLB and the TLBR,
TLBWI, and TLBWR instructions. EntryLo0 holds the entries for even pages and EntryLo1 holds the entries for odd
pages.

Table A.4 TLB Invalid Exception State Saved in Addition to the Cause Register

Register State Value

BadVAddr Failing address

Context The bits of the Context register corresponding to the set bits of the VirtualIndex field of the ContextConfig
register are loaded with the high-order bits of the invalid virtual address.

EntryHi Bits 31:13 contain VA31:13 of the failing address. Bits 12:11 contain VA12:11 ANDed with the compliment

(logical negation) of PageGrainMask; ASID field contains ASID of the invalid reference.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table A.5 TLB Modified Exception State Saved in Addition to the Cause Register

Register State Value

BadVAddr Failing address

Context The bits of the Context register corresponding to the set bits of the VirtualIndex field of the ContextConfig
register are loaded with the high-order bits of the virtual address being written.

EntryHi Bits 31:13 contain VA31:13 of the failing address. Bits 12:11 contain VA12:11 ANDed with the compliment

(logical negation) of PageGrainMask; ASID field contains ASID of the modifying reference.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

 The SmartMIPS® Release 2 Privileged Resource Architecture

74 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

In a SmartMIPS MMU, the previously reserved bits 31 and 30 are defined for further access control.

The interpretation, though not the size or location, of the PFN field in a SmartMIPS MMU varies with the content of
the PageGrain register.

Figure A.2 shows the format of the EntryLo0 and EntryLo1 registers; Table A.6 describes the EntryLo0 and EntryLo1
register fields.

Figure A.2 SmartMIPS EntryLo0, EntryLo1 Register Format
31 30 29 6 5 3 2 1 0

RI XI PFN C D V G

Table A.6 SmartMIPS EntryLo0, EntryLo1 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

RI 31 Read Inhibit. If this bit is set in a TLB entry, an attempt,
other than a MIPS16 PC-relative load, to read data on the
virtual page causes a TLB Invalid exception, even if the V
(Valid) bit is set. The RI bit is writable only if the RIE bit of
the PageGrain register is set. If the RIE bit of PageGrain is
not set, the RI bit of EntryLo0/EntryLo1 is set to zero on any
write to the register, regardless of the value written.

R/W 0 Required

XI 30 Execute Inhibit. If this bit is set in a TLB entry, an attempt to
fetch an instruction or to load MIPS16 PC-relative data from
the virtual page causes a TLB Invalid exception, even if the V
(Valid) bit is set. The XI bit is writable only if the XIE bit of
the PageGrain register is set. If the XIE bit of PageGrain is
not set, the XI bit of EntryLo0/EntryLo1 is set to zero on any
write to the register, regardless of the value written.

R/W 0 Required

A.7 CP0 Registers

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 75

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

A.7.2 Context Register (CP0 Register 4, Select 0)

Compliance Level: Context register modifications are Required for a SmartMIPS MMU.

In SmartMIPS, the Context register is a read/write register containing a pointer to an arbitrary power-of-two aligned
data structure in memory, such as an entry in the page table entry (PTE) array. Unlike the standard MIPS PRA, where
this pointer was defined to reference a 16-byte structure in memory within a linear array containing an entry for each
even/odd virtual page pair, the SmartMIPS Context register can be used far more generally. Depending on the value
in the ContextConfig register, it may point to an 8-byte pair of 32-bit PTEs within a single-level page table scheme, or
to a first level page directory entry in a two-level lookup scheme.

A TLB exception (Refill, Invalid, or Modified) causes bits VA31:31-((X-Y)-1) to be written to a variable range of bits
“(X-1):Y” of the Context register, where this range corresponds to the contiguous range of set bits in the

PFN 29:6 Up to 24 bits of the physical address associated with the page.
The binding of PFN bits to physical address bits depends on
the value of the Mask field of the PageGrain register:

R/W Undefined Required

PageGrainMask= 0 0: PFN corresponds to PAPABITS-3..10

PageGrainMask= 0 1: PFN corresponds to PAPABITS-2..11

PageGrainMask= 1 1: PFN corresponds to PAPABITS-1..12

PageGrainMask= 1 0: UNDEFINED

The width of this field implicitly limits the range of physical
addresses to 36 bits, 35 bits, or 34 bits for minimum page
sizes of 4K, 2K, and 1K bytes respectively. If the processor
implements fewer physical address bits than this limit, the
unimplemented bits must be written as zero, and return zero
on read. If the processor implements more physical address
bits than are defined by PFN, given a non-zero value of
PageGrainMask, the bits to the left of the MSB of PFN are

zero in the generated physical address.

Starting with Release 2, the standard MIPS Privileged
Resource Architecture supports the above meanings of
PageGrainMask= 0 0 and PageGrainMask= 1 1.

C 5:3 Coherency attribute. Unchanged from MIPS32.

D 2 “Dirty” bit. Unchanged from MIPS32.

V 1 Valid bit, indicating that the TLB entry, and thus the virtual
page mapping are valid. If this bit is a one, accesses to the
page are permitted. If this bit is a zero, accesses to the page
cause a TLB Invalid exception. In SmartMIPS this bit is fur-
ther qualified by the RI and XI bits.

R/W Undefined Required

G 0 Global bit. Unchanged from MIPS32.

Table A.6 SmartMIPS EntryLo0, EntryLo1 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

 The SmartMIPS® Release 2 Privileged Resource Architecture

76 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

ContextConfig register. Bits 31:X are R/W to software, and are unaffected by the exception. Bits Y-1:0 will always
read as 0. If X = 23 and Y = 4, i.e. bits 22:4 are set in ContextConfig, the behavior is identical to the standard MIPS
PRA Context register. Although the fields have been made variable in size and interpretation, the standard MIPS PRA
nomenclature is retained. Bits 31:X are referred to as the PTEBase field, and bits X:Y-1 are referred to as BadVPN2.

The value of the Context register is UNPREDICTABLE following a modification of the contents of the
ContextConfig register.

Figure A.3 shows the format of the Context Register; Table A.7 describes the Context register fields.

Figure A.3 SmartMIPS Context Register Format

A.7.3 ContextConfig Register (CP0 Register 4, Select 1)

Compliance Level: Required for a SmartMIPS MMU.

The ContextConfig register defines the bits of the Context register into which the high order bits of the virtual address
causing a TLB exception will be written, and how many bits of that virtual address will be extracted. Bits above the
selected field of the Context register are R/W to software and serve as the PTEBase field. Bits below the selected field
of the Context register will read as zeroes.

The field to contain the virtual address index is defined by a single block of contiguous non-zero bits within the
ContextConfig register’s VirtualIndex field. Any zero bits to the right of the least significant one bit cause the corre-
sponding Context register bits to read as zero. Any zero bits to the left of the most significant one bit cause the corre-
sponding Context register bits to be R/W to software and unaffected by TLB exceptions.

31 X X-1 Y Y-1 0

PTEBase BadVPN2 0

Table A.7 SmartMIPS Context Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

PTEBase Variable, 31:X where
X in {31..0}.
May be null.

This field is for use by the operating system
and is normally written with a value that
allows the operating system to use the
Context Register as a pointer to an array of
data structures in memory corresponding to
the address region containing the virtual
address which caused the exception.

R/W Undefined Required

BadVPN2 Variable, (X-1):Y
where
X in {32..1} and
Y in {31..0}.
May be null.

This field is written by hardware on a TLB
exception. It contains bits VA31:31-((X-Y)-1) of

the virtual address that caused the exception.

R Undefined Required

0 Variable, (Y-1):0
where
Y in {31:1}.
May be null.

Must be written as zero; returns zero on read. 0 0 Reserved

A.7 CP0 Registers

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 77

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

A value of all ones in the ContextConfig register means that the full 32 bits of the faulting virtual address will be cop-
ied into the context register, making it duplicate the BadVAddr register. A value of all zeroes means that the full 32
bits of the Context register are R/W for software and unaffected by TLB exceptions.

Figure A.4 shows the SmartMIPS formats of the ContextConfig Register; Table A.8 describes the ContextConfig reg-
ister fields.

Figure A.4 SmartMIPS ContextConfig Register Format

It is permissible to implement a subset of the ContextConfig register, in which some number of bits are read-only and
set to one or zero as appropriate. It is possible for software to determine which bits are implemented by alternately
writing all zeroes and all ones to the register, and reading back the resulting values. All implementations of the
ContextConfig register must allow for the emulation of the standard MIPS PRA fixed Context register configuration.
Table A.9 describes some useful ContextConfig values.

A.7.4 PageMask Register (CP0 Register 5, Select 0)

Compliance Level: PageMask register modifications are Required for SmartMIPS MMUs.

As in the standard MIPS PRA, the PageMask register is a read/write register used for reading from and writing to the
TLB. SmartMIPS allows implementation of page sizes smaller than 4K bytes, and the PageMask register must be
extended to accommodate them, as shown in Table A.11. To assure backward compatibility with the standard MIPS
PRA, the Mask field extension bits 12 ad 11 can be inhibited and overridden by the corresponding bits of the
PageGrain register. Inhibited PageMask bits are treated as 1 bits for the purposes of virtual address translation - the
corresponding virtual address bits are not used for TLB match comparisons - but read as zeroes to software to pre-
serve backward compatibility.

31 0

VirtualIndex

Table A.8 SmartMIPS ContextConfig Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

VirtualIndex 31:0 A mask of 0 to 32 contiguous 1 bits in this field causes
the corresponding bits of the Context register to be writ-
ten with the high-order bits of the virtual address causing
a TLB exception.
Behavior of the processor is UNDEFINED if non-con-
tiguous 1 bits are written into the register field.

R/W 0x007ffff0 Required

Table A.9 Recommended ContextConfig Values for SmartMIPS

Value
Page Table

Organization Page Size PTE Size Compliance

0x007ffff0 Single Level 4K 64 bits/page REQUIRED

0x003ffff8 Single Level 4K 32 bits/page RECOMMENDED

0x007ffff8 Single Level 2K 32 bits/page RECOMMENDED

0x00fffff8 Single Level 1K 32 bits/page RECOMMENDED

 The SmartMIPS® Release 2 Privileged Resource Architecture

78 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Figure A.5 shows the format of the PageMask register; Table A.10 describes the PageMask register fields.

Figure A.5 SmartMIPS PageMask Register Format

The columns marked with an asterix (*) are those which can be disabled and overridden by the PageGrain register.

It is implementation-dependent how many of the encodings described in Table A.11 are implemented. All processors
must implement the 4KB page size, and the implemented Mask bits must span the contiguous range of values from
4KB to the smallest page granularity that can be specified by the implemented PageGrain register. If a particular page
size encoding is not implemented by a processor, a read of the PageMask register must return zeros in all bits that
correspond to encodings that are not implemented. Software can determine which page sizes are supported by writing
the encoding for a 16MB page to the PageMask register, then examine the value returned from a read of the

31 25 24 11 10 0

0 Mask 0

Table A.10 PageMask Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

Mask 24:11 The Mask field is a bit mask in which a “1” bit indicates
that the corresponding bit of the virtual address should not
participate in the TLB match.

Bits 12 and 11 of the Mask field can be overridden by the
Mask field of the PageGrain register: If set in the
PageGrain register, the corresponding bit in the
PageMask register is unwritable and reads as a zero to
software, but the corresponding bit is excluded from
address comparison as if it were set in the PageMask
Mask field.

R/W 0 for bits
12..1; Unde-
fined for bits
24..13

Required

0 31:25,
10:0

Must be written as zero; return zero on read. 0 0 Reserved

Table A.11 Values for the Mask Field of the PageMask Register

Page Size

Bit

24 23 22 21 20 19 18 17 16 15 14 13 12* 11*

1 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 1

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 1 1

16 KBytes 0 0 0 0 0 0 0 0 0 0 1 1 1 1

64 KBytes 0 0 0 0 0 0 0 0 1 1 1 1 1 1

256 KBytes 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 MByte 0 0 0 0 1 1 1 1 1 1 1 1 1 1

4 MByte 0 0 1 1 1 1 1 1 1 1 1 1 1 1

16 Mbyte 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A.7 CP0 Registers

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 79

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

PageMask register. If a pair of bits reads back as ones, the processor implements that page size. The operation of the
processor is UNDEFINED if software loads the PageMask register with a value other than one of those listed in
Table A.11.

The standard MIPS PRA might support page sizes larger than listed in Table A.11. Those larger page sizes are
allowed on SmartMIPS implementations as long as they don’t interfere with support for 1KB, 2KB and 4KB pages.

The value of the PageMask register is UNPREDICTABLE following a modification of the contents of the
PageGrain register.

A.7.5 PageGrain Register (CP0 Register 5, Select 1)

Compliance Level: Required for SmartMIPS MMUs. Optional for Release 2 (and subsequent) of the standard MIPS
PRA.

The PageGrain register is a read/write register used to configure the SmartMIPS MMU to operate on pages smaller
than 4K bytes. It’s value is used when reading from and writing to the TLB. SmartMIPS allows implementation of
page sizes smaller than 4K bytes, and in those implementations, the PageMask register must be extended to accom-
modate them, as shown in Table A.11. The PageGrain register also contains enable bits for the read-inhibit (RI) and
execute-inhibit (XI) bits of the EntryLo registers.

It is not required that the contents of the PageGrain register be reflected in the contents of the TLB. Therefore, the
TLB must be flushed before any change to the PageGrain register is made. The operation of the processor is UNDE-
FINED if software modifies any field of the PageGrain register while valid entries are present in the TLB.

Figure A.6 shows the format of the PageGrain register; Table A.10 describes the PageGrain register fields.

Figure A.6 SmartMIPS PageGrain Register Format
31 30 29 13 12 11 10 8 7 0

RIE XIE 0 Mask 111 0

Table A.12 SmartMIPS PageGrain Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

RIE 31 Read Inhibit Enable. If this bit is set, the RI bit of the EntryLo0
and EntryLo1 registers is enabled. If the bit is clear, the RI bit is
disabled and not writable by software. See section A.7.1.

R/W 0 Required

XIE 30 Execute Inhibit Enable. If this bit is set, the XI bit of the
EntryLo0 and EntryLo1 registers is enabled. If the bit is clear,
the XI bit is disabled and not writable by software. See section
A.7.1.

R/W 0 Required

 The SmartMIPS® Release 2 Privileged Resource Architecture

80 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

It is not required that all bits of the PageGrain Mask field be fully implemented. Unimplemented low-order bits must
be read-only, and must read and function as having a value of 1. Unimplemented high-order bits must read and func-
tion as having the same value as the highest-order implemented bit. Table A.13 shows some the read/write and func-
tional behavior of the possible SmartMIPS PageGrain subsets.

Mask 12:11 Determines whether the corresponding bits of a virtual address
are to be used for address translation purposes. This affects the
behavior of the EntryLo0/EntryLo1, EntryHi, and PageMask
registers according to the following scheme:

R/W 1 1 Required

0 0 Bits 12 and 11 of PageMask and EntryHi are R/W to
software and used in address translation. PFN field of
EntryLo0/EntryLo1 is treated as PAPABITS-3..10

0 1 Bit 12 of PageMask and EntryHi is R/W to software
and used in address translation. Bit 11 of PageMask
and EntryHi reads as zero, and is not used in address
translation.
PFN field of EntryLo0/EntryLo1 is treated as
PAPABITS-2..11

1 1 Bits 12 and 11 of PageMask and EntryHi read as
zero, and are not used in address translation. PFN
field of EntryLo0/EntryLo1 is treated as
PAPABITS-1..12. In this setting, virtual address transla-

tion is identical to that of the standard MIPS PRA.

1 0 UNDEFINED

1 10:8 Reserved bits for future Mask expansion. Must be written as
one, return one on read.

0 29:13,
7:0

Must be written as zero; return zero on read. 0 0 Reserved

Table A.13 PageGrain Implementation Subset Behavior

Subset
Mask Value

Written
Mask Value Read

Back
Page

Granularity

2K Byte Page
Grain but not 1K
Byte Page Grain

0 0 0 1 2K Bytes

0 1 0 1 2K Bytes

1 0 1 1 4K Bytes

1 1 1 1 4K Bytes

1K Byte Page
Grain but not 2K
Byte Page Grain

0 0 0 0 1K Bytes

0 1 1 1 4K Bytes

1 0 0 0 1K Bytes

1 1 1 1 4K Bytes

Table A.12 SmartMIPS PageGrain Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

A.7 CP0 Registers

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 81

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

A.7.6 EntryHi Register (CP0 Register 10, Select 0

Compliance Level: EntryHi register modifications are Required for SmartMIPS MMUs. Modifications optional in
Release 2 (and subsequent) of the standard MIPS PRA.

As in the standard MIPS PRA, the EntryHi register contains the virtual address match information used for TLB read,
write, and access operations.

For SmartMIPS implementations supporting pages sizes smaller than 4K, the VPN2 field of EntryHi must be extended
to allow for the greater number of VPNs in an address space divided into smaller pages. A similar optional feature
was added to Release 2 (and subsequent) of the standard MIPS Privileged Resource Architecture.

Figure A.7 shows the format of the modified SmartMIPS EntryHi register; Table A.14 describes the EntryHi register
fields.

Figure A.7 SmartMIPS EntryHi Register Format

The value of the EntryHi register is UNPREDICTABLE following a modification of the contents of the PageGrain
register.

A.7.7 Configuration Register 3 (CP0 Register 16, Select 3)

Compliance Level: Required for SmartMIPS.

The Config3 register is fully defined in Volume III of this multi-volume set. Bit 1 (named SM) of the Config3 register
denotes the presence of the SmartMIPS ASE.

31 11 10 8 7 0

VPN2 0 ASID

Table A.14 EntryHi Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

VPN2 31:11 VA31:11 of the virtual address (virtual page number / 2).

This field is written by hardware on a TLB exception or
on a TLB read, and is written by software before a TLB
write. Bits 12 and 11 can take a non-zero value only if
the corresponding bits of the PageGrain register are
zeroes.

R/W 0 for bits 12..1;
Undefined for
bits 31..13

Required

ASID 7:0 ASID. Unchanged from the standard MIPS PRA R/W Undefined Required

0 10:8 Must be written as zero; returns zero on read. 0 0 Reserved

 The SmartMIPS® Release 2 Privileged Resource Architecture

82 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Appendix B

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.00 83

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

 Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change
bars on figure titles are used to denote a potential change in the figure itself.

Version Date Comments

0.10 27 September 2000 Initial review draft.

0.20 27 October 2000 PRA section added, MIPS16 instructions migrated to Volume IV of MIPS Archi-
tecture specification. SmartMIPS no longer referred to as an “ASE” in the text.

0.90 1 November 2000 Conversion to new specification format. First external review draft.

0.91 December 15, 2000 Changes in this revision:
• Correct temp variable indexing in the pseudo code for MADDU.
• Features listed in the Config2 register should have been included in the Config3

register instead.

0.92 December 21, 2000 Changes in this revision:
• Make effects of MULTP and MADDP on ACX explicit and mandatory.
• Reduce size of reserved 1’s field in PageGrain register to align with EntryHi

ASID field as intended.
• Clarification of “binary polynomial basis” nomenclature.

0.93 January 30, 2001 Elimination of references to a “MIPS Crypto” ASE as a subset of SmartMIPS.
Clarify UNPREDICTABLE state of PageMask and EntryHi registers following
modification of PageGrain register.

0.94 February 28, 2001 Addition of RIE and XIE bits to PageGrain register as enables for the RI and XI
bits in the EntryLo registers, to enhance backward compatibility.

0.95 March 12, 2001 Update for next external review revision.

1.00 August 1, 2001 Update based on all feedback received from external distribution.

1.01 April 23, 2002 Create and release an External Confidential version of the Architecture for Pro-
grammers manual.

1.20 August 29, 2002 Add bit encoding tables to describe the SmartMIPS instructions.

2.00 May 15, 2003 Changes in this revision:
• Add base architecture requirements, software detection of the ASE, and compli-

ance and subsetting sections to the introduction.
• Update the ROTR and ROTRV instruction encoding to specify a 1-bit differ-

ence between shift and rotate, and to align with the Release 2 instruction
descriptions.

• Note that conflicts between the SmartMIPS ASE specification and Release 2 of
the MIPS32 Architecture are resolved in favor of the SmartMIPS ASE.

• Remove the register description of the Config3 register, as this is now fully
described in Volume III.

 Revision History

84 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.00

Copyright © 2004-2005, 2008, 2010 MIPS Technologies Inc. All rights reserved.

2.50 July 1, 2005 Changes in this revision:
• Update all files to FrameMaker 7.1.
• Replace the use of the BinPolyMult function in MULTP with PolyMult, and

define that function as pseudo code.
• Change reset state of bits 12..11 of the PageMask and EntryHi registers to 0

from Undefined. This is simply a clarification because the reset state of
PageGrain forces those bits of PageMask and EntryHi to be 0.

2.51 July 15, 2008 Changes in this revision:
• Update copyrights.
• Update contact information.

3.00 April 30, 2010 Edit for microMIPS and Release 3:
• Similar RI/XI TLB bits feature added to Release 3 base Architecture
• ContextConfig added to Release 3 base Architecture
• PRA chapter now pertains relationship of SmartMIPS to Release 3 of the stan-

dard PRA.
• Appendix A added to show historical relationship of SmartMIPS with Release 2

and older of the standard PRA.
• Document title updated to match other Release 3 documents.

Version Date Comments

	MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architecture
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	Guide to the Instruction Set
	2.1 Understanding the Instruction Fields
	2.1.1 Instruction Fields
	2.1.2 Instruction Descriptive Name and Mnemonic
	2.1.3 Format Field
	2.1.4 Purpose Field
	2.1.5 Description Field
	2.1.6 Restrictions Field
	2.1.7 Operation Field
	2.1.8 Exceptions Field
	2.1.9 Programming Notes and Implementation Notes Fields

	2.2 Operation Section Notation and Functions
	2.2.1 Instruction Execution Ordering
	2.2.2 Pseudocode Functions
	2.2.2.1 Coprocessor General Register Access Functions
	2.2.2.2 Memory Operation Functions
	2.2.2.3 Floating Point Functions
	2.2.2.4 Miscellaneous Functions

	2.3 Op and Function Subfield Notation
	2.4 FPU Instructions

	The SmartMIPS® Application-Specific Extension to the MIPS32® Architecture
	3.1 Base Architecture Requirements
	3.2 Software Detection of the ASE
	3.3 Compliance and Subsetting
	3.4 Overview of the SmartMIPS ASE
	3.4.1 Support for Cryptographic Algorithms in the SmartMIPS ASE
	3.4.1.1 Secret Key Cryptography
	3.4.1.2 Public Key Cryptography

	3.4.2 Code Density Optimization
	3.4.2.1 Data Type Conversion
	3.4.2.2 Jump Delay Slot Suppression
	3.4.2.3 Stack Frame Set-up and Tear-down

	3.4.3 Other ISA Enhancements
	3.4.4 Privileged Resource Architecture Enhancements

	3.5 Instruction Bit Encoding

	The SmartMIPS® Cryptographic Feature Set
	4.1 The Special Register ACX
	4.2 Change to MADDU Semantics
	4.3 Change to MULTU Semantics
	4.4 Possible Changes to other Multiply/Accumulate Semantics
	4.5 New Instructions
	4.5.1 MFLHXU
	4.5.2 MTLHX
	4.5.3 MADDP
	4.5.4 MULTP
	4.5.5 PPERM
	4.5.6 ROTR
	4.5.7 ROTRV

	Other ISA Elements of the SmartMIPS® ASE
	5.1 LWXS Instruction
	LWXS
	MADDP
	MADDU
	MFLHXU
	MTLHX
	MULTP
	MULTU
	PPERM
	ROTR
	ROTRV

	The SmartMIPS® Release 3 Privileged Resource Architecture
	6.1 Introduction
	6.2 Overview
	6.3 Compliance
	6.4 Interaction between the SmartMIPS ASE and Release 2 of the MIPS32 Architecture
	6.5 The SmartMIPS System Coprocessor
	6.5.1 CP0 Register Summary

	6.6 Virtual Memory
	6.6.1 TLB-Based Virtual Address Translation
	6.6.1.1 Address Translation

	6.6.2 General Exception Processing
	6.6.3 TLB Refill Exception
	6.6.4 TLB Invalid Exception
	6.6.5 TLB Modified Exception

	6.7 CP0 Registers
	6.7.1 PageMask Register (CP0 Register 5, Select 0)
	6.7.2 PageGrain Register (CP0 Register 5, Select 1)
	6.7.3 EntryHi Register (CP0 Register 10, Select 0
	6.7.4 Configuration Register 3 (CP0 Register 16, Select 3)

	The SmartMIPS® Release 2 Privileged Resource Architecture
	A.1 Introduction
	A.2 Overview
	A.3 Compliance
	A.4 Interaction between the SmartMIPS ASE and Release 2 of the MIPS32 Architecture
	A.5 The SmartMIPS System Coprocessor
	A.5.1 CP0 Register Summary

	A.6 Virtual Memory
	A.6.1 TLB-Based Virtual Address Translation
	A.6.1.1 TLB Organization
	A.6.1.2 Address Translation

	A.6.2 General Exception Processing
	A.6.3 TLB Refill Exception
	A.6.4 TLB Invalid Exception
	A.6.5 TLB Modified Exception

	A.7 CP0 Registers
	A.7.1 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)
	A.7.2 Context Register (CP0 Register 4, Select 0)
	A.7.3 ContextConfig Register (CP0 Register 4, Select 1)
	A.7.4 PageMask Register (CP0 Register 5, Select 0)
	A.7.5 PageGrain Register (CP0 Register 5, Select 1)
	A.7.6 EntryHi Register (CP0 Register 10, Select 0
	A.7.7 Configuration Register 3 (CP0 Register 16, Select 3)

	Revision History

